Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin K. Fuller is active.

Publication


Featured researches published by Kevin K. Fuller.


Eukaryotic Cell | 2015

Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus

Kevin K. Fuller; Shan Chen; Jennifer J. Loros; Jay C. Dunlap

ABSTRACT Low rates of homologous recombination have broadly encumbered genetic studies in the fungal pathogen Aspergillus fumigatus. The CRISPR/Cas9 system of bacteria has recently been developed for targeted mutagenesis of eukaryotic genomes with high efficiency and, importantly, through a mechanism independent of homologous repair machinery. As this new technology has not been developed for use in A. fumigatus, we sought to test its feasibility for targeted gene disruption in this organism. As a proof of principle, we first demonstrated that CRISPR/Cas9 can indeed be used for high-efficiency (25 to 53%) targeting of the A. fumigatus polyketide synthase gene (pksP), as evidenced by the generation of colorless (albino) mutants harboring the expected genomic alteration. We further demonstrated that the constitutive expression of the Cas9 nuclease by itself is not deleterious to A. fumigatus growth or virulence, thus making the CRISPR system compatible with studies involved in pathogenesis. Taken together, these data demonstrate that CRISPR can be utilized for loss-of-function studies in A. fumigatus and has the potential to bolster the genetic toolbox for this important pathogen.


Mbio | 2013

The Fungal Pathogen Aspergillus fumigatus Regulates Growth, Metabolism, and Stress Resistance in Response to Light

Kevin K. Fuller; Carol S. Ringelberg; Jennifer J. Loros; Jay C. Dunlap

ABSTRACT Light is a pervasive environmental factor that regulates development, stress resistance, and even virulence in numerous fungal species. Though much research has focused on signaling pathways in Aspergillus fumigatus, an understanding of how this pathogen responds to light is lacking. In this report, we demonstrate that the fungus does indeed respond to both blue and red portions of the visible spectrum. Included in the A. fumigatus light response is a reduction in conidial germination rates, increased hyphal pigmentation, enhanced resistance to acute ultraviolet and oxidative stresses, and an increased susceptibility to cell wall perturbation. By performing gene deletion analyses, we have found that the predicted blue light receptor LreA and red light receptor FphA play unique and overlapping roles in regulating the described photoresponsive behaviors of A. fumigatus. However, our data also indicate that the photobiology of this fungus is complex and likely involves input from additional photosensory pathways beyond those analyzed here. Finally, whole-genome microarray analysis has revealed that A. fumigatus broadly regulates a variety of metabolic genes in response to light, including those involved in respiration, amino acid metabolism, and metal homeostasis. Together, these data demonstrate the importance of the photic environment on the physiology of A. fumigatus and provide a basis for future studies into this unexplored area of its biology. IMPORTANCE Considerable effort has been taken to understand how the mold pathogen Aspergillus fumigatus senses its environment to facilitate growth within the immunocompromised host. Interestingly, it was shown that the deletion of a blue light photoreceptor in two divergent fungal pathogens, Cryptococcus neoformans and Fusarium oxysporum, leads to an attenuation of virulence in their respective animal infection models. This suggests that light signaling pathways are conservatively involved in the regulation of fungal pathogenesis. However, an understanding of whether and how A. fumigatus responds to light is lacking. Here we demonstrate that this organism coordinates broad aspects of its physiology with the photic environment, including pathways known to be involved in virulence, such as carbohydrate metabolism and oxidative stress resistance. Moreover, the photoresponse of A. fumigatus differs in notable ways from the well-studied model Aspergillus nidulans. Therefore, this work should represent a general advancement in both photobiology and A. fumigatus research communities. Considerable effort has been taken to understand how the mold pathogen Aspergillus fumigatus senses its environment to facilitate growth within the immunocompromised host. Interestingly, it was shown that the deletion of a blue light photoreceptor in two divergent fungal pathogens, Cryptococcus neoformans and Fusarium oxysporum, leads to an attenuation of virulence in their respective animal infection models. This suggests that light signaling pathways are conservatively involved in the regulation of fungal pathogenesis. However, an understanding of whether and how A. fumigatus responds to light is lacking. Here we demonstrate that this organism coordinates broad aspects of its physiology with the photic environment, including pathways known to be involved in virulence, such as carbohydrate metabolism and oxidative stress resistance. Moreover, the photoresponse of A. fumigatus differs in notable ways from the well-studied model Aspergillus nidulans. Therefore, this work should represent a general advancement in both photobiology and A. fumigatus research communities.


Current Genetics | 2015

Fungal photobiology: visible light as a signal for stress, space and time

Kevin K. Fuller; Jennifer J. Loros; Jay C. Dunlap

Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.


Mbio | 2016

Heterogeneity among Isolates Reveals that Fitness in Low Oxygen Correlates with Aspergillus fumigatus Virulence

Caitlin H. Kowalski; Sarah R. Beattie; Kevin K. Fuller; Elizabeth A. McGurk; Yi-Wei Tang; Tobias M. Hohl; Joshua J. Obar; Robert A. Cramer

ABSTRACT Previous work has shown that environmental and clinical isolates of Aspergillus fumigatus represent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence among A. fumigatus isolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions of low oxygen promotes virulence of A. fumigatus in this model. To test this hypothesis, we performed in vitro fitness and in vivo virulence analyses in the triamcinolone murine model of IPA with 14 environmental and clinical isolates of A. fumigatus. Among these isolates, we observed a strong correlation between fitness in low oxygen in vitro and virulence. In further support of our hypothesis, experimental evolution of AF293, a strain that exhibits reduced fitness in low oxygen and reduced virulence in the triamcinolone model of IPA, results in a strain (EVOL20) that has increased hypoxia fitness and a corresponding increase in virulence. Thus, the ability to thrive in low oxygen correlates with virulence of A. fumigatus isolates in the context of steroid-mediated murine immunosuppression. IMPORTANCE Aspergillus fumigatus occupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation between A. fumigatus isolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence of A. fumigatus. We describe here the first observation of a model-specific virulence phenotype correlative with in vitro fitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogen A. fumigatus. Aspergillus fumigatus occupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation between A. fumigatus isolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence of A. fumigatus. We describe here the first observation of a model-specific virulence phenotype correlative with in vitro fitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogen A. fumigatus.


Environmental Microbiology | 2016

Seeing the world differently: variability in the photosensory mechanisms of two model fungi

Arko Dasgupta; Kevin K. Fuller; Jay C. Dunlap; Jennifer J. Loros

Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.


Mbio | 2016

Aspergillus fumigatus Photobiology Illuminates the Marked Heterogeneity between Isolates

Kevin K. Fuller; Robert A. Cramer; Michael E. Zegans; Jay C. Dunlap; Jennifer J. Loros

ABSTRACT The given strain of Aspergillus fumigatus under study varies across laboratories, ranging from a few widely used “standards,” e.g., Af293 or CEA10, to locally acquired isolates that may be unique to one investigator. Since experiments concerning physiology or gene function are seldom replicated by others, i.e., in a different A. fumigatus background, the extent to which behavioral heterogeneity exists within the species is poorly understood. As a proxy for assessing such intraspecies variability, we analyzed the light response of 15 A. fumigatus isolates and observed striking quantitative and qualitative heterogeneity among them. The majority of the isolates fell into one of two seemingly mutually exclusive groups: (i) “photopigmenters” that robustly accumulate hyphal melanin in the light and (ii) “photoconidiators” that induce sporulation in the light. These two distinct responses were both governed by the same upstream blue light receptor, LreA, indicating that a specific protein’s contribution can vary in a strain-dependent manner. Indeed, while LreA played no apparent role in regulating cell wall homeostasis in strain Af293, it was essential in that regard in strain CEA10. The manifest heterogeneity in the photoresponses led us to compare the virulence levels of selected isolates in a murine model; remarkably, the virulence did vary greatly, although not in a manner that correlated with their overt light response. Taken together, these data highlight the extent to which isolates of A. fumigatus can vary, with respect to both broad physiological characteristics (e.g., virulence and photoresponse) and specific protein functionality (e.g., LreA-dependent phenotypes). IMPORTANCE The current picture of Aspergillus fumigatus biology is akin to a collage, patched together from data obtained from disparate “wild-type” strains. In a systematic assessment of 15 A. fumigatus isolates, we show that the species is highly heterogeneous with respect to its light response and virulence. Whereas some isolates accumulate pigments in light as previously reported with strain Af293, most induce sporulation which had not been previously observed. Other photoresponsive behaviors are also nonuniform, and phenotypes of identical gene deletants vary in a background-dependent manner. Moreover, the virulence of several selected isolates is highly variable in a mouse model and apparently does not track with any observed light response. Cumulatively, this work illuminates the fact that data obtained with a single A. fumigatus isolate are not necessarily predictive of the species as whole. Accordingly, researchers should be vigilant when making conclusions about their own work or when interpreting data from the literature. The current picture of Aspergillus fumigatus biology is akin to a collage, patched together from data obtained from disparate “wild-type” strains. In a systematic assessment of 15 A. fumigatus isolates, we show that the species is highly heterogeneous with respect to its light response and virulence. Whereas some isolates accumulate pigments in light as previously reported with strain Af293, most induce sporulation which had not been previously observed. Other photoresponsive behaviors are also nonuniform, and phenotypes of identical gene deletants vary in a background-dependent manner. Moreover, the virulence of several selected isolates is highly variable in a mouse model and apparently does not track with any observed light response. Cumulatively, this work illuminates the fact that data obtained with a single A. fumigatus isolate are not necessarily predictive of the species as whole. Accordingly, researchers should be vigilant when making conclusions about their own work or when interpreting data from the literature.


Archive | 2014

6 Photobiology and Circadian Clocks in Neurospora

Kevin K. Fuller; Jennifer M. Hurley; Jennifer J. Loros; Jay C. Dunlap

Light sensing and circadian rhythmicity are two related processes that promote the adaptation of many fungal species to their environment. This chapter begins with a description of fungal photoreceptors and their distributions across fungal lineages. We then discuss in some detail the molecular mechanisms of the photoresponse in two well-studied model fungi, Neurospora crassa and Aspergillus nidulans, placing an emphasis on the important similarities and differences between the two species. This will lead to a description of circadian rhythmicity in fungi in general, with a particular emphasis on Neurospora crassa. We highlight the core mechanism in this organism as well as discuss the inputs and outputs that can affect the clock. We also note at the end some new developments in molecular genetics in Neurospora.


Advances in Genetics | 2016

Fungal Light Sensing at the Bench and Beyond

Kevin K. Fuller; Jay C. Dunlap; Jennifer J. Loros

Visible light is a pervasive environmental signal that orients most organisms in space and time. For a fungus, the detection of light is facilitated by diverse classes of photoreceptor proteins, which in turn coordinate growth, spore dispersal, stress resistance, primary metabolism, and toxin production. We will first provide a discussion on signal input, focusing on recent insights into how fungal photoreceptors detect and transmit information at the biochemical and molecular levels. We will then pivot our discussion to how light influences fungal behaviors that are of industrial, agricultural, or even medical relevance. Because the light environment can be easily manipulated in many contexts, we will argue that understanding fungal photobiology is both an important basic and applied endeavor.


Journal of Biological Rhythms | 2018

Circadian Clearance of a Fungal Pathogen from the Lung Is Not Based on Cell-intrinsic Macrophage Rhythms:

Shan Chen; Kevin K. Fuller; Jay C. Dunlap; Jennifer J. Loros

Circadian rhythms govern immune cell function, giving rise to time-of-day variation in the recognition and clearance of bacterial or viral pathogens; to date, however, no such regulation of the host-fungal interaction has been described. In this report, we use murine models to explore circadian control of either fungal-macrophage interactions in vitro or pathogen clearance from the lung in vivo. First, we show that expression of the important fungal pattern recognition receptor Dectin-1 (clec7a), from either bone marrow–derived or peritoneum-derived macrophages, is not under circadian regulation at either the level of transcript or cell surface protein expression. Consistent with this finding, the phagocytic activity of macrophages in culture against spores of the pathogen Aspergillus fumigatus also did not vary over time. To account for the multiple cell types and processes that may be coordinated in a circadian fashion in vivo, we examined the clearance of A. fumigatus from the lungs of immunocompetent mice. Interestingly, animals inoculated at night demonstrated a 2-fold enhancement in clearance compared with animals inoculated in the morning. Taken together, our data suggest that while molecular recognition of fungi by immune cells may not be circadian, other processes in vivo may still allow for time-of-day differences in fungal clearance from the lung.


Applied Microbiology and Biotechnology | 2018

Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression

Kevin K. Fuller; Jay C. Dunlap; Jennifer J. Loros

Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.

Collaboration


Dive into the Kevin K. Fuller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer M. Hurley

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge