Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Schneider is active.

Publication


Featured researches published by David S. Schneider.


Science | 2012

Disease Tolerance as a Defense Strategy

Ruslan Medzhitov; David S. Schneider; Miguel P. Soares

Enduring Tolerance During an infection, the host organism deploys multiple defense strategies. Disease resistance, the process by which the immune system decreases pathogen burden is perhaps the most well-known, and certainly the mechanism that is best studied and understood. Other defense strategies range from pathogen avoidance, through tolerance of pathogen-induced tissue damage, and endurance of the overall pathogen burden. Medzhitov et al. (p. 936) review the concept of disease tolerance and suggest that particularly in animals, it is an overlooked mechanism of host defense. The immune system protects from infections primarily by detecting and eliminating the invading pathogens; however, the host organism can also protect itself from infectious diseases by reducing the negative impact of infections on host fitness. This ability to tolerate a pathogen’s presence is a distinct host defense strategy, which has been largely overlooked in animal and human studies. Introduction of the notion of “disease tolerance” into the conceptual tool kit of immunology will expand our understanding of infectious diseases and host pathogen interactions. Analysis of disease tolerance mechanisms should provide new approaches for the treatment of infections and other diseases.


Nature Reviews Immunology | 2008

Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases

David S. Schneider; Janelle S. Ayres

A host can evolve two types of defence mechanism to increase its fitness when challenged with a pathogen: resistance and tolerance. Immunology is a well-defined field in which the mechanisms behind resistance to infection are dissected. By contrast, the mechanisms behind the ability to tolerate infections are studied in a less methodical manner. In this Opinion, we provide evidence that animals have specific tolerance mechanisms and discuss their potential clinical impact. It is important to distinguish between these two defence mechanisms because they have different pathological and epidemiological effects. An increased understanding of tolerance to pathogen infection could lead to more efficient treatments for infectious diseases and a better description of host–pathogen interactions.


PLOS Pathogens | 2007

A specific primed immune response in Drosophila is dependent on phagocytes.

Linh N. Pham; Marc S. Dionne; Mimi Shirasu-Hiza; David S. Schneider

Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.


Current Biology | 2000

Interactions between the cellular and humoral immune responses in Drosophila.

Monicia Elrod-Erickson; Smita Mishra; David S. Schneider

Drosophila has highly efficient defenses against infection. These include both cellular immune responses, such as the phagocytosis of invading microorganisms, and humoral immune responses, such as the secretion of antimicrobial peptides into the hemolymph [1] [2]. These defense systems are thought to interact, but the nature and extent of these interactions is not known. Here we describe a method for inhibiting phagocytosis in Drosophila blood cells (hemocytes) by injecting polystyrene beads into the body cavity. This treatment does not in itself make a fly susceptible to Escherichia coli infection. However, when performed on flies carrying the mutation immune deficiency (imd), which affects the humoral immune response [3], the treatment results in a striking decrease in resistance to infection. We therefore carried out a sensitized genetic screen to identify immunocompromised mutants by co-injecting beads and E. coli. From this screen, we identified a new gene we have named red shirt and identified the caspase Dredd as a regulator of the Drosophila immune response. The observation that mutants with defects in the humoral immune response are further immunocompromised by blocking phagocytosis, and thus inhibiting the cellular immune response, shows that the Drosophila cellular and humoral immune responses act in concert to fight infection.


Nature | 2013

The ubiquitin ligase parkin mediates resistance to intracellular pathogens

Paolo Manzanillo; Janelle S. Ayres; Robert O. Watson; Angela C. Collins; Gianne Souza; Chris S. Rae; David S. Schneider; Ken Nakamura; Michael U. Shiloh; Jeffery S. Cox

Ubiquitin-mediated targeting of intracellular bacteria to the autophagy pathway is a key innate defence mechanism against invading microbes, including the important human pathogen Mycobacterium tuberculosis. However, the ubiquitin ligases responsible for catalysing ubiquitin chains that surround intracellular bacteria are poorly understood. The parkin protein is a ubiquitin ligase with a well-established role in mitophagy, and mutations in the parkin gene (PARK2) lead to increased susceptibility to Parkinson’s disease. Surprisingly, genetic polymorphisms in the PARK2 regulatory region are also associated with increased susceptibility to intracellular bacterial pathogens in humans, including Mycobacterium leprae and Salmonella enterica serovar Typhi, but the function of parkin in immunity has remained unexplored. Here we show that parkin has a role in ubiquitin-mediated autophagy of M. tuberculosis. Both parkin-deficient mice and flies are sensitive to various intracellular bacterial infections, indicating parkin has a conserved role in metazoan innate defence. Moreover, our work reveals an unexpected functional link between mitophagy and infectious disease.


Annual Review of Immunology | 2012

Tolerance of Infections

Janelle S. Ayres; David S. Schneider

A host has two methods to defend against pathogens: It can clear the pathogens or reduce their impact on health in other ways. The first, resistance, is well studied. Study of the second, which ecologists call tolerance, is in its infancy. Tolerance measures the dose response curve of a hosts health in reaction to a pathogen and can be studied in a simple quantitative manner. Such studies hold promise because they point to methods of treating infections that put evolutionary pressures on microbes different from antibiotics and vaccines. Studies of tolerance will provide an improved foundation to describe our interactions with all microbes: pathogenic, commensal, and mutualistic. One obvious mechanism affecting tolerance is the intensity of an immune response; an overly exuberant immune response can cause collateral damage through immune effectors and because of the energy allocated away from other physiological functions. There are potentially many other tolerance mechanisms, and here we systematically describe tolerance using a variety of animal systems.


Current Biology | 2006

Akt and foxo Dysregulation Contribute to Infection-Induced Wasting in Drosophila

Marc S. Dionne; Linh N. Pham; Mimi Shirasu-Hiza; David S. Schneider

BACKGROUND Studies in Drosophila have taught us a great deal about how animals regulate the immediate innate immune response, but we still know little about how infections cause pathology. Here, we examine the pathogenesis associated with Mycobacterium marinum infection in the fly. M. marinum is closely related to M. tuberculosis, which causes tuberculosis in people. RESULTS A microarray analysis showed that metabolism is profoundly affected in M. marinum-infected flies. A genetic screen identified foxo mutants as slower-dying after infection than wild-type flies. FOXO activity is inhibited by the insulin effector kinase Akt; we show that Akt activation is systemically reduced as a result of M. marinum infection. Finally, we show that flies infected with Mycobacterium marinum undergo a process like wasting: They progressively lose metabolic stores, in the form of fat and glycogen. They also become hyperglycemic. In contrast, foxo mutants exhibit less wasting. CONCLUSIONS In people, many infections--including tuberculosis--can cause wasting, much as we see in Drosophila. Our study is the first examination of the metabolic consequences of infection in a genetically tractable invertebrate and gives insight into the metabolic consequences of mycobacterial infection, implicating impaired insulin signaling as a key mediator of these events. These results suggest that the fly can be used to study more than the immediate innate immune response to infection; it can also be used to understand the physiological consequences of infection and the immune response.


PLOS Biology | 2009

The Role of Anorexia in Resistance and Tolerance to Infections in Drosophila

Janelle S. Ayres; David S. Schneider

Infections initiate a signaling loop in which sick animals become anorexic, and the resulting change in diet alters the bodys ability to fight infections in good and bad ways.


PLOS Biology | 2008

A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections.

Janelle S. Ayres; David S. Schneider

Organisms evolve two routes to surviving infections—they can resist pathogen growth (resistance) and they can endure the pathogenesis of infection (tolerance). The sum of these two properties together defines the defensive capabilities of the host. Typically, studies of animal defenses focus on either understanding resistance or, to a lesser extent, tolerance mechanisms, thus providing little understanding of the relationship between these two mechanisms. We suggest there are nine possible pairwise permutations of these traits, assuming they can increase, decrease, or remain unchanged in an independent manner. Here we show that by making a single mutation in the gene encoding a protease, CG3066, active in the melanization cascade in Drosophila melanogaster, we observe the full spectrum of changes; these mutant flies show increases and decreases in their resistance and tolerance properties when challenged with a variety of pathogens. This result implicates melanization in fighting microbial infections and shows that an immune response can affect both resistance and tolerance to infections in microbe-dependent ways. The fly is often described as having an unsophisticated and stereotypical immune response where single mutations cause simple binary changes in immunity. We report a level of complexity in the flys immune response that has strong ecological implications. We suggest that immune responses are highly tuned by evolution, since selection for defenses that alter resistance against one pathogen may change both resistance and tolerance to other pathogens.


Cellular Microbiology | 2003

Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster

Bryce E. Mansfield; Marc S. Dionne; David S. Schneider; Nancy E. Freitag

Summary The facultative intracellular bacterial pathogen Listeria monocytogenes is capable of replicating within a broad range of host cell types and host species. We report here the establishment of the fruit fly Drosophila melanogaster as a new model host for the exploration of L. monocytogenes pathogenesis and host response to infection. Listeria monocytogenes was capable of establishing lethal infections in adult fruit flies and larvae with extensive bacterial replication occurring before host death. Bacteria were found in the cytosol of insect phagocytic cells, and were capable of directing host cell actin polymerization. Bacterial gene products necessary for intracellular replication and cell‐to‐cell spread within mammalian cells were similarly found to be required within insect cells, and although previous work has suggested that L. monocytogenes virulence gene expression requires temperatures above 30°C, bacteria within insect cells were found to express virulence determinants at 25°C. Mutant strains of Drosophila that were compromised for innate immune responses demonstrated increased susceptibility to L. monocytogenes infection. These data indicate L. monocytogenes infection of fruit flies shares numerous features of mammalian infection, and thus that Drosophila has the potential to serve as a genetically tractable host system that will facilitate the analysis of host cellular responses to L. monocytogenes infection.

Collaboration


Dive into the David S. Schneider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janelle S. Ayres

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge