David Schweinfurth
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Schweinfurth.
Chemical Communications | 2008
David Schweinfurth; Kenneth I. Hardcastle; Uwe H. F. Bunz
The copper catalyzed 1,3-dipolar cycloaddition of 4-butoxyphenylazide with 2-, 3- or 4-ethynylpyridine furnishes 1,4-diaryltriazoles, which display turn-on fluorescence upon addition of metal cations.
Journal of the American Chemical Society | 2015
David Schweinfurth; Michael G. Sommer; Mihail Atanasov; Serhiy Demeshko; Stephan Hohloch; Franc Meyer; Frank Neese; Biprajit Sarkar
The azido ligand is one of the most investigated ligands in magnetochemistry. Despite its importance, not much is known about the ligand field of the azido ligand and its influence on magnetic anisotropy. Here we present the electronic structure of a novel five-coordinate Co(II)-azido complex (1), which has been characterized experimentally (magnetically and by electronic d-d absorption spectroscopy) and theoretically (by means of multireference electronic structure methods). Static and dynamic magnetic data on 1 have been collected, and the latter demonstrate slow relaxation of the magnetization in an applied external magnetic field of H = 3000 Oe. The zero-field splitting parameters deduced from static susceptibility and magnetizations (D = -10.7 cm(-1), E/D = 0.22) are in excellent agreement with the value of D inferred from an Arrhenius plot of the magnetic relaxation time versus the temperature. Application of the so-called N-electron valence second-order perturbation theory (NEVPT2) resulted in excellent agreement between experimental and computed energies of low-lying d-d transitions. Calculations were performed on 1 and a related four-coordinate Co(II)-azido complex lacking a fifth axial ligand (2). On the basis of these results and contrary to previous suggestions, the N3(-) ligand is shown to behave as a strong σ and π donor. Magnetostructural correlations show a strong increase in the negative D with increasing Lewis basicity (shortening of the Co-N bond distances) of the axial ligand on the N3(-) site. The effect on the change in sign of D in going from four-coordinate Co(II) (positive D) to five-coordinate Co(II) (negative D) is discussed in the light of the bonding scheme derived from ligand field analysis of the ab initio results.
New Journal of Physics | 2011
Bernhard Grotz; J. Beck; Philipp Neumann; Boris Naydenov; Rolf Reuter; Friedemann Reinhard; Fedor Jelezko; Jörg Wrachtrup; David Schweinfurth; Biprajit Sarkar; P. R. Hemmer
A single nitrogen-vacancy (NV) center is used to sense individual, as well as small ensembles of, electron spins placed outside the diamond lattice. Applying double electron–electron resonance techniques, we were able to observe Rabi nutations of these external spins as well as the coupling strength between the external spins and the NV sensor, via modulations and accelerated decay of the NV spin echo. Echo modulation frequencies as large as 600 kHz have been observed, being equivalent to a few nanometers distance between the NV and an unpaired electron spin. Upon surface modification, the coupling disappears, suggesting the spins to be localized at surface defects. The present study is important for understanding the properties of diamond surface spins so that their effects on NV sensors can eventually be mitigated. This would enable potential applications such as the imaging and tracking of single atoms and molecules in living cells or the use of NVs on scanning probe tips to entangle remote spins for scalable room temperature quantum computers.
Inorganic Chemistry | 2013
David Schweinfurth; Igor Schapiro; Serhiy Demeshko; Johannes E. M. N. Klein; Joshua Telser; Andrew Ozarowski; Cheng-Yong Su; Franc Meyer; Mihail Atanasov; Frank Neese; Biprajit Sarkar
The coordination complexes of Ni(II) with the tripodal ligands tpta (tris[(1-phenyl-1H-1,2,3-triazol-4-yl)methyl]amine), tbta ([(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine), and tdta (tris[(1-(2,6-diisopropyl-phenyl)-1H-1,2,3-triazol-4-yl)methyl]amine) and the bidentate ligand pyta (1-(2,6-diisopropylphenyl)-4-(2-pyridyl)-1,2,3-triazole), [Ni(tpta)2](BF4)2 (1), [Ni(tbta)2](BF4)2 (2), [Ni(tdta)2](BF4)2 (3), and [Ni(pyta)3](BF4)2 (4), were synthesized from Ni(BF4)2·6H2O and the corresponding ligands. Complexes 2 and 4 were also characterized structurally using X-ray diffraction and magnetically via susceptibility measurements. Structural characterization of 2 that contains the potentially tetradentate, tripodal tbta ligand revealed that the Ni(II) center in that complex is in a distorted octahedral environment, being surrounded by two of the tripodal ligands. Each of those ligands coordinate to the Ni(II) center through the central amine nitrogen atom and two of the triazole nitrogen donors; the Ni-N(amine) distances being longer than Ni-N(triazole) distances. In case of 4, three of the bidentate ligands pyta bind to the Ni(II) center with the binding of the triazole nitrogen atoms being stronger than those of the pyridine. Temperature dependent susceptibility measurements on 2 and 4 revealed a room temperature χ(M)T value of 1.18 and 1.20 cm(3) K mol(-1), respectively, indicative of S = 1 systems. High-frequency and -field EPR (HFEPR) measurements were performed on all the complexes to accurately determine their g-tensors and the all-important zero-field splitting (zfs) parameters D and E. Interpretation of the optical d-d absorption spectra using ligand field theory revealed the B and Dq values for these complexes. Quantum chemical calculations based on the X-ray and DFT optimized geometries and their ligand field analysis have been used to characterize the metal-ligand bonding and its influence on the magnitude and sign of the zfs parameters. This is the first time that such extensive HFEPR, LFT, and advanced computational studies are being reported on a series of mononuclear, distorted octahedral Ni(II) complexes containing different kinds of nitrogen donating ligands in the same complex.
Journal of the American Chemical Society | 2014
David Schweinfurth; Michal Zalibera; Michael Kathan; Chengshuo Shen; Marcella Mazzolini; Nils Trapp; Jeanne Crassous; Georg Gescheidt; François Diederich
We present the synthesis and characterization of enantiomerically pure [6]helicene o-quinones (P)-(+)-1 and (M)-(-)-1 and their application to chiroptical switching and chiral recognition. (P)-(+)-1 and (M)-(-)-1 each show a reversible one-electron reduction process in their cyclic voltammogram, which leads to the formation of the semiquinone radical anions (P)-(+)-1(•-) and (M)-(-)-1(•-), respectively. Spectroelectrochemical ECD measurements give evidence of the reversible switching between the two redox states, which is associated with large differences of the Cotton effects [Δ(Δε)] in the UV and visible regions. The reduction of (±)-1 by lithium metal provides [Li(+){(±)-1(•-)}], which was studied by EPR and ENDOR spectroscopy to reveal substantial delocalization of the spin density over the helicene backbone. DFT calculations demonstrate that the lithium hyperfine coupling A((7)Li) in [Li(+){(±)-1(•-)}] is very sensitive to the position of the lithium cation. On the basis of this observation, chiral recognition by ENDOR spectroscopy was achieved by complexation of [Li(+){(P)-(+)-1(•-)}] and [Li(+){(M)-(-)-1(•-)}] with an enantiomerically pure phosphine oxide ligand.
Journal of the American Chemical Society | 2012
Simon H. Eitel; Matthias Bauer; David Schweinfurth; Naina Deibel; Biprajit Sarkar; Harald Kelm; Hans-Jörg Krüger; Wolfgang Frey; René Peters
A combination of spectroscopic and electrochemical methods--XANES, EXAFS, X-ray, (1)H NMR, EPR, Mössbauer, and cyclic voltammetry--demonstrate that the most efficient Pd catalysts for the asymmetric rearrangement of allylic trifluoroacetimidates unexpectedly possess in the activated oxidized form a Pd(III) center bound to a ferrocene core which remains unchanged (Fe(II)) during the oxidative activation. These are the first recognized Pd(III) complexes acting as enantioselective catalysts.
Chemistry: A European Journal | 2010
Hari Sankar Das; Fritz Weisser; David Schweinfurth; Cheng-Yong Su; Lapo Bogani; Jan Fiedler; Biprajit Sarkar
Quinones are naturally occurring redox active molecules that function in vital electron-transport processes, often in conjugation with a transition-metal center. p-Quinones, such as vitamin K derivatives, ubiquinones or plastoquinones, play important roles in photosynthesis, respiration, and information-transfer processes. Substituted p-quinones have been extensively used as ligands in coordination chemistry in recent years. The remarkable properties that such ligands impart to their metal complexes make such compounds useful in a variety of fields, such as homogenous catalysis, supramolecular chemistry, coordination polymers, and as bridging ligands in combination with redox active metal centers such as ruthenium. The last field has gained tremendous attention in recent years because of ambiguities arising in oxidation-state formulations also with “organometallic-type” non-innocent ligands. In addition, the creation of quinone-based molecular magnets is a lively field of research that has produced many interesting results. 2,5-Diamino-1,4-benzoquinone 1 and its substituted derivatives have been known for decades. The synthesis of 1 has previously been reported and such syntheses are rarely straightforward one-pot reactions. Some years back Braunstein et al. reported a straightforward and “green” synthesis of a new class of molecules that occurs through transamination. Such molecules, which are isomers of 1 and its derivatives, are best described as zwitterions, 6. Inspired by this process we looked for an elegant synthesis for the parent compound 1 and for possible intermediates formed during the transamination process. Herein we report a simple one-pot synthesis of 1 and its mono(2 and 3) and dialkyl (4 and 5) derivatives (Scheme 1). To elucidate
Inorganic Chemistry | 2013
David Schweinfurth; Marat M. Khusniyarov; Denis Bubrin; Stephan Hohloch; Cheng-Yong Su; Biprajit Sarkar
Bridged metal complexes [{Cu(tmpa)}2(μ-L(1)-2H)](ClO4)2 (1), [{Cu(tmpa)}2(μ-L(2)-2H)](ClO4)2 (2), [{Cu(tmpa)}2(μ-L(3)-2H)](BPh4)2 (3), and [{Cu(tmpa)}2(μ-L(4)-2H)](ClO4)2 (4) (tmpa = tris(2-pyridylmethyl)amine, L(1) = chloranilic acid, L(2) = 2,5-dihydroxy-1,4-benzoquinone, L(3) = (2,5-di-[2-(methoxy)-anilino]-1,4-benzoquinone, L(4) = azophenine) were synthesized from copper(II) salts, tmpa, and the bridging quinonoid ligands in the presence of a base. X-ray structural characterization of the complexes showed a distorted octahedral environment around the copper(II) centers for the complexes 1-3, the donors being the nitrogen atoms of tmpa, and the nitrogen or oxygen donors of the bridging quinones. In contrast, the copper(II) centers in 4 display a distorted square-pyramidal coordination, where one of the pyridine arms of each tmpa remains uncoordinated. Bond-length analyses within the bridging ligand exhibit localization of the double bonds inside the bridge for 1-3. In contrast, complete delocalization of double bonds within the bridging ligand is observed for 4. Temperature-dependent magnetic susceptibility measurements on the complexes reveal an antiferromagnetic coupling between the copper(II) ions. The strength of antiferromagnetic coupling was observed to depend on the energy of the HOMO of the bridging quinone ligands, with exchange coupling constants J in the range between -23.2 and -0.6 cm(-1) and the strength of antiferromagnetic coupling of 4 > 3 > 2 > 1. Broken-symmetry density functional theory calculations (DFT) revealed that the orientation of magnetic orbitals in 1 and 2 is different than that in 3 and 4, and this results in two different exchange pathways. These results demonstrate how bridge-mediated spin-spin coupling in quinone-bridged metal complexes can be strongly tuned by a rational design of the bridging ligand employing the [O] for [NR] isoelectronic analogy.
Chemistry: A European Journal | 2014
David Schweinfurth; Yvonne Rechkemmer; Stephan Hohloch; Naina Deibel; Irina Peremykin; Jan Fiedler; Raphael Marx; Petr Neugebauer; Joris van Slageren; Biprajit Sarkar
The complexes [{(tmpa)Co(II) }2 (μ-L(1) )(2-) ](2+) (1(2+) ) and [{(tmpa)Co(II) }2 (μ-L(2) )(2-) ](2+) (2(2+) ), with tmpa=tris(2-pyridylmethyl)amine, H2 L(1) =2,5-di-[2-(methoxy)-anilino]-1,4-benzoquinone, and H2 L(2) =2,5-di-[2-(trifluoromethyl)-anilino]-1,4-benzoquinone, were synthesized and characterized. Structural analysis of 2(2+) revealed a distorted octahedral coordination around the cobalt centers, and cobalt-ligand bond lengths that match with high-spin Co(II) centers. Superconducting quantum interference device (SQUID) magnetometric studies on 1(2+) and 2(2+) are consistent with the presence of two weakly exchange-coupled high-spin cobalt(II) ions, for which the nature of the coupling appears to depend on the substituents on the bridging ligand, being antiferromagnetic for 1(2+) and ferromagnetic for 2(2+) . Both complexes exhibit several one-electron redox steps, and these were investigated with cyclic voltammetry and UV/Vis/near-IR spectroelectrochemistry. For 1(2+) , it was possible to chemically isolate the pure forms of both the one-electron oxidized mixed-valent 1(3+) and the two-electron oxidized isovalent 1(4+) forms, and characterize them structurally as well as magnetically. This series thus provided an opportunity to investigate the effect of reversible electron transfers on the total spin-state of the molecule. In contrast to 2(2+) , for 1(4+) the metal-ligand distances and the distances within the quinonoid ligand point to the existence of two low-spin Co(III) centers, thus showing the innocence of the quintessential non-innocent ligands L. Magnetic data corroborate these observations by showing the decrease of the magnetic moment by roughly half (neglecting spin exchange effects) on oxidizing the molecules with one electron, and the disappearance of a paramagnetic response upon two-electron oxidation, which confirms the change in spin state associated with the electron-transfer steps.
Chemistry: A European Journal | 2014
Fritz Weisser; Stephan Hohloch; Sebastian Plebst; David Schweinfurth; Biprajit Sarkar
Electrochemical and photochemical bond-activation steps are important for a variety of chemical transformations. We present here four new complexes, [Ru(L(n) )(dmso)(Cl)]PF6 (1-4), where L(n) is a tripodal amine ligand with 4-n pyridylmethyl arms and n-1 triazolylmethyl arms. Structural comparisons show that the triazoles bind closer to the Ru center than the pyridines. For L(2) , two isomers (with respect to the position of the triazole arm, equatorial or axial), trans-2sym and trans-2un , could be separated and compared. The increase in the number of the triazole arms in the ligand has almost no effect on the Ru(II) /Ru(III) oxidation potentials, but it increases the stability of the RuSdmso bond. Hence, the oxidation waves become more reversible from trans-1 to trans-4, and whereas the dmso ligand readily dissociates from trans-1 upon heating or irradiation with UV light, the RuS bond of trans-4 remains perfectly stable under the same conditions. The strength of the RuS bond is not only influenced by the number of triazole arms but also by their position, as evidenced by the difference in redox behavior and reactivity of the two isomers, trans-2sym and trans-2un . A mechanistic picture for the electrochemical, thermal, and photochemical bond activation is discussed with data from NMR spectroscopy, cyclic voltammetry, and spectroelectrochemistry.