Michael G. Sommer
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael G. Sommer.
Journal of the American Chemical Society | 2015
David Schweinfurth; Michael G. Sommer; Mihail Atanasov; Serhiy Demeshko; Stephan Hohloch; Franc Meyer; Frank Neese; Biprajit Sarkar
The azido ligand is one of the most investigated ligands in magnetochemistry. Despite its importance, not much is known about the ligand field of the azido ligand and its influence on magnetic anisotropy. Here we present the electronic structure of a novel five-coordinate Co(II)-azido complex (1), which has been characterized experimentally (magnetically and by electronic d-d absorption spectroscopy) and theoretically (by means of multireference electronic structure methods). Static and dynamic magnetic data on 1 have been collected, and the latter demonstrate slow relaxation of the magnetization in an applied external magnetic field of H = 3000 Oe. The zero-field splitting parameters deduced from static susceptibility and magnetizations (D = -10.7 cm(-1), E/D = 0.22) are in excellent agreement with the value of D inferred from an Arrhenius plot of the magnetic relaxation time versus the temperature. Application of the so-called N-electron valence second-order perturbation theory (NEVPT2) resulted in excellent agreement between experimental and computed energies of low-lying d-d transitions. Calculations were performed on 1 and a related four-coordinate Co(II)-azido complex lacking a fifth axial ligand (2). On the basis of these results and contrary to previous suggestions, the N3(-) ligand is shown to behave as a strong σ and π donor. Magnetostructural correlations show a strong increase in the negative D with increasing Lewis basicity (shortening of the Co-N bond distances) of the axial ligand on the N3(-) site. The effect on the change in sign of D in going from four-coordinate Co(II) (positive D) to five-coordinate Co(II) (negative D) is discussed in the light of the bonding scheme derived from ligand field analysis of the ab initio results.
Angewandte Chemie | 2015
Woormileela Sinha; Michael G. Sommer; Naina Deibel; Fabian Ehret; Matthias Bauer; Biprajit Sarkar; Sanjib Kar
The most common oxidation states of copper in stable complexes are +I and +II. Cu(III) complexes are often considered as intermediates in biological and homogeneous catalysis. More recently, Cu(IV) species have been postulated as possible intermediates in oxidation catalysis. Despite the importance of these higher oxidation states of copper, spectroscopic data for these oxidation states remain scarce, with such information on Cu(IV) complexes being non-existent. We herein present the synthesis and characterization of three copper corrolato complexes. A combination of electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, XANES measurements, and DFT calculations points to existence of three distinct redox states in these molecules for which the oxidation states +II, +III, and +IV can be invoked for the copper centers. The present results thus represent the first spectroscopic and theoretical investigation of a Cu(IV) species, and describe a redox series where Cu(II), Cu(III), and Cu(IV) are discussed within the same molecular platform.
Chemistry: A European Journal | 2014
Woormileela Sinha; Michael G. Sommer; Naina Deibel; Fabien Ehret; Biprajit Sarkar; Sanjib Kar
Macrocycles such as porphyrins and corroles have important functions in chemistry and biology, including light absorption for photosynthesis. Generation of near-IR (NIR)-absorbing dyes based on metal complexes of these macrocycles for mimicking natural photosynthesis still remains a challenging task. Herein, the syntheses of four new Ag(III) corrolato complexes with differently substituted corrolato ligands are presented. A combination of structural, electrochemical, UV/Vis/NIR-EPR spectroelectrochemical, and DFT studies was used to decipher the geometric and electronic properties of these complexes in their various redox states. This combined approach established the neutral compounds as stable Ag(III) complexes, and the one-electron reduced species of all the compounds as unusual, stable Ag(II) complexes. The one-electron oxidized forms of two of the complexes display absorptions in the NIR region, and thus they are rare examples of mononuclear complexes of corroles that absorb in the NIR region. The appearance of this NIR band, which has mixed intraligand charge transfer/intraligand character, is strongly dependent on the substituents of the corrole rings. Hence, the present work revolves round the design principles for the generation of corrole-based NIR-absorbing dyes and shows the potential of corroles for stabilizing unusual metal oxidation states. These findings thus further contribute to the generation of functional metal complexes based on such macrocyclic ligands.
Dalton Transactions | 2016
Michael G. Sommer; Yvonne Rechkemmer; Lisa Suntrup; Stephan Hohloch; Margarethe van der Meer; Joris van Slageren; Biprajit Sarkar
The azido ligand is widely used in coordination chemistry both as a ligand and as a metal-bound reactant. Its role as a bridge for magnetic exchange coupling has attracted a lot of attention in polynuclear metal complexes. However, only a very limited number of complexes are known in which a single azide anion, particularly in the μ1,1-mode, is the only unsupported connection between two metal centers. We present here a series of copper(ii)-azido complexes with amine anchored, triazole-based tripodal ligands containing varying substituents. In the mononuclear copper-azido complexes there is only a negligible effect of these substituents on the structure of the metal complexes. However, the substituents seem to play a decisive role in the type and formation of the dinuclear complexes. Using the tripodal ligand TBTA with flexible benzyl substituents resulted in a rare example of an unsupported and solely μ1,1-azido-bridged dinuclear complex. The use of the TDTA ligand with 2,6-diisopropylphenyl moieties as rigid and sterically demanding substituents resulted in the formation of a scarce example of a solely μ1,4-tetrazolato-bridged dinuclear complex by in situ cycloaddition between the azide and solvent nitrile. This observation of a reaction of unactivated aliphatic nitrile with the azide anion at room temperature is very unusual. The isolation and characterization (by means of X-ray diffraction) of intermediates allows for mechanistic insights into the cycloaddition reaction. The isolated bridges in both dinuclear complexes render them ideal model compounds for the investigation of the magnetic exchange mediated by these ligands usually employed in polynuclear complexes and frameworks together with additional bridging ligands. Magnetic measurements and broken-symmetry DFT calculations were used to shed light on the magnetic exchange revealing weak and moderate antiferromagnetic exchange for the azide and tetrazolate, respectively.
Chemistry: A European Journal | 2014
Michael G. Sommer; Petra Kureljak; Damijana Urankar; David Schweinfurth; Nikolina Stojanović; Martina Bubrin; Martin Gazvoda; Maja Osmak; Biprajit Sarkar; Janez Košmrlj
Azocarboxamide (azcH) has been combined for the first time with [Ru-Cym] to generate metal complexes with N,N- and N,O-coordination mode, [(Cym)Ru(azc)Cl] and [(Cym)Ru(azcH)Cl](+) [PF6 ](-). Geometric and electronic structures of the complexes are reported along with their in vitro activities against different tumour cell lines and preliminary results on solution chemistry. Compound [(Cym)Ru(azc)Cl] exhibited remarkable cytotoxic properties. It was cell-type specific and had comparable IC50 values towards both cancer cells and their drug-resistant subline. A tenfold increase in the sensitivity towards [(Cym)Ru(azc)Cl] was noted for the tumour cells with depleted intracellular glutathione (GSH) level, suggesting the essential role of GSH in cell response to this compound.
Inorganic Chemistry | 2017
Michael G. Sommer; Raphael Marx; David Schweinfurth; Yvonne Rechkemmer; Petr Neugebauer; Margarethe van der Meer; Stephan Hohloch; Serhiy Demeshko; Franc Meyer; Joris van Slageren; Biprajit Sarkar
The azide anion is widely used as a ligand in coordination chemistry. Despite its ubiquitous presence, controlled synthesis of azido complexes remains a challenging task. Making use of click-derived tripodal ligands, we present here various coordination motifs of the azido ligands, the formation of which appears to be controlled by the peripheral substituents on the tripodal ligands with otherwise identical structure of the coordination moieties. Thus, the flexible benzyl substituents on the tripodal ligand TBTA led to the formation of the first example of an unsupported and solely μ1,1-azido-bridged dicobalt(II) complex. The more rigid phenyl substituents on the TPTA ligand deliver an unsupported and solely μ1,3-azido-bridged dicobalt(II) complex. Bulky diisopropylphenyl substituents on the TDTA ligand deliver a doubly μ1,1-azido-bridged dicobalt(II) complex. Intriguingly, the mononuclear copper(II) complex [Cu(TBTA)N3]+ is an excellent synthon for generating mixed dinuclear complexes of the form [(TBTA)Co(μ1,1-N3)Cu(TBTA)]3+ or [(TBTA)Cu(μ1,1-N3)Cu(TPTA)]3+, both of which contain a single unsupported μ1,1-N3 as a bridge. To the best of our knowledge, these are also the first examples of mixed dinuclear complexes with a μ1,1-N3 monoazido bridge. All complexes were crystallographically characterized, and selected examples were probed via magnetometry and high-field EPR spectroscopy to elucidate the electronic structures of these complexes and the nature of magnetic coupling in the various azido-bridged complexes. These results thus prove the power of click-tripodal ligands in generating hitherto unknown chemical structures and properties.
Archive | 2017
Michael G. Sommer; Raphael Marx; David Schweinfurth; Yvonne Rechkemmer; Petr Neugebauer; Margarethe van der Meer; Stephan Hohloch; Serhiy Demeshko; Franc Meyer; Joris van Slageren; Biprajit Sarkar
Related Article: Michael G. Sommer, Raphael Marx, David Schweinfurth, Yvonne Rechkemmer, Petr Neugebauer, Margarethe van der Meer, Stephan Hohloch, Serhiy Demeshko, Franc Meyer, Joris van Slageren, and Biprajit Sarkar|2017|Inorg.Chem.|56|402|doi:10.1021/acs.inorgchem.6b02330
Organometallics | 2014
Naina Deibel; Michael G. Sommer; Stephan Hohloch; Johannes Schwann; David Schweinfurth; Fabian Ehret; Biprajit Sarkar
Organometallics | 2013
Naina Deibel; Stephan Hohloch; Michael G. Sommer; David Schweinfurth; Fabian Ehret; Pierre Braunstein; Biprajit Sarkar
Dalton Transactions | 2014
Stephan Hohloch; David Schweinfurth; Michael G. Sommer; Fritz Weisser; Naina Deibel; Fabian Ehret; Biprajit Sarkar