Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Staněk is active.

Publication


Featured researches published by David Staněk.


Journal of Cell Biology | 2004

Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer

David Staněk; Karla M. Neugebauer

Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are required for pre-mRNA splicing throughout the nucleoplasm, yet snRNPs also concentrate in Cajal bodies (CBs). To address a proposed role of CBs in snRNP assembly, we have used fluorescence resonance energy transfer (FRET) microscopy to investigate the subnuclear distribution of specific snRNP intermediates. Two distinct complexes containing the protein SART3 (p110), required for U4/U6 snRNP assembly, were localized: SART3•U6 snRNP and SART3•U4/U6 snRNP. These complexes segregated to different nuclear compartments, with SART3•U6 snRNPs exclusively in the nucleoplasm and SART3•U4/U6 snRNPs preferentially in CBs. Mutant cells lacking the CB-specific protein coilin and consequently lacking CBs exhibited increased nucleoplasmic levels of SART3•U4/U6 snRNP complexes. Reconstitution of CBs in these cells by expression of exogenous coilin restored accumulation of SART3•U4/U6 snRNP in CBs. Thus, while some U4/U6 snRNP assembly can occur in the nucleoplasm, these data provide evidence that SART3•U6 snRNPs form in the nucleoplasm and translocate to CBs where U4/U6 snRNP assembly occurs.


PLOS ONE | 2011

Histone Deacetylase Activity Modulates Alternative Splicing

Jarmila Hnilicová; Samira Hozeifi; Eva Dušková; Jaroslav Icha; Tereza Tománková; David Staněk

There is increasing evidence to suggest that splicing decisions are largely made when the nascent RNA is still associated with chromatin. Here we demonstrate that activity of histone deacetylases (HDACs) influences splice site selection. Using splicing-sensitive microarrays, we identified ∼700 genes whose splicing was altered after HDAC inhibition. We provided evidence that HDAC inhibition induced histone H4 acetylation and increased RNA Polymerase II (Pol II) processivity along an alternatively spliced element. In addition, HDAC inhibition reduced co-transcriptional association of the splicing regulator SRp40 with the target fibronectin exon. We further showed that the depletion of HDAC1 had similar effect on fibronectin alternative splicing as global HDAC inhibition. Importantly, this effect was reversed upon expression of mouse HDAC1 but not a catalytically inactive mutant. These results provide a molecular insight into a complex modulation of splicing by HDACs and chromatin modifications.


Journal of Cell Biology | 2010

The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells

Martina Huranová; Ivan Ivani; Aleš Benda; Ina Poser; Yehuda Brody; Martin Hof; Yaron Shav-Tal; Karla M. Neugebauer; David Staněk

GFP-tagged snRNP components reveal the dynamics and rate for spliceosome assembly in vivo.


Molecular Biology of the Cell | 2008

Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies.

David Staněk; Jarmila Přidalová-Hnilicová; Ivan Novotný; Martina Huranová; Michaela Blažíková; Xin Wen; Aparna K. Sapra; Karla M. Neugebauer

The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6.U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.


Molecular Biology of the Cell | 2008

Spliceosomal snRNPs Repeatedly Cycle through Cajal Bodies

David Staněk; Jarmila Přidalová; Ivan Novotný; Martina Huranová; Michaela Blažíková; Xin Wen; Aparna K. Sapra; Karla M. Neugebauer

The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6.U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.


RNA Biology | 2015

Coilin: The first 25 years

Martin Machyna; Karla M. Neugebauer; David Staněk

Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilins structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilins function in Cajal body formation and RNP metabolism will be discussed in the light of these developments.


RNA Biology | 2017

Mutations in spliceosomal proteins and retina degeneration

Šárka Růžičková; David Staněk

ABSTRACT A majority of human genes contain non-coding intervening sequences – introns that must be precisely excised from the pre-mRNA molecule. This event requires the coordinated action of five major small nuclear ribonucleoprotein particles (snRNPs) along with additional non-snRNP splicing proteins. Introns must be removed with nucleotidal precision, since even a single nucleotide mistake would result in a reading frame shift and production of a non-functional protein. Numerous human inherited diseases are caused by mutations that affect splicing, including mutations in proteins which are directly involved in splicing catalysis. One of the most common hereditary diseases associated with mutations in core splicing proteins is retinitis pigmentosa (RP). So far, mutations in more than 70 genes have been connected to RP. While the majority of mutated genes are expressed specifically in the retina, eight target genes encode for ubiquitous core snRNP proteins (Prpf3, Prpf4, Prpf6, Prpf8, Prpf31, and SNRNP200/Brr2) and splicing factors (RP9 and DHX38). Why mutations in spliceosomal proteins, which are essential in nearly every cell in the body, causes a disease that displays such a tissue-specific phenotype is currently a mystery. In this review, we recapitulate snRNP functions, summarize the missense mutations which are found in spliceosomal proteins as well as their impact on protein functions and discuss specific models which may explain why the retina is sensitive to these mutations.


Journal of Cell Science | 2014

The splicing factor U1-70K interacts with the SMN complex and is required for nuclear gem integrity.

Eva Stejskalova; David Staněk

ABSTRACT The nuclear SMN complex localizes to specific structures called nuclear gems. The loss of gems is a cellular marker for several neurodegenerative diseases. Here, we identify that the U1-snRNP-specific protein U1-70K localizes to nuclear gems, and we show that U1-70K is necessary for gem integrity. Furthermore, we show that the interaction between U1-70K and the SMN complex is RNA independent, and we map the SMN complex binding site to the unstructured N-terminal tail of U1-70K. Consistent with these results, the expression of the U1-70K N-terminal tail rescues gem formation. These findings show that U1-70K is an SMN-complex-associating protein, and they suggest a new function for U1-70K in the formation of nuclear gems.


Human Mutation | 2014

Retinitis Pigmentosa Mutations of SNRNP200 Enhance Cryptic Splice‐Site Recognition

Zuzana Cvačková; Daniel Matějů; David Staněk

Mutations in SNRP200 gene cause autosomal‐dominant retinal disorder retinitis pigmentosa (RP). The protein product of SNRNP200 is BRR2, a DExD/H box RNA helicase crucial for pre‐mRNA splicing. In this study, we prepared p.S1087L and p.R1090L mutations of human BRR2 using bacterial artificial chromosome recombineering and stably expressed them in human cell culture. Mutations in BRR2 did not compromise snRNP assembly and both mutants were incorporated into the spliceosome just as the wild‐type (wt) protein. Surprisingly, cells expressing RP mutants exhibited increased splicing efficiency of the LDHA gene. Next, we found that depletion of endogenous BRR2 enhanced usage of a β‐globin cryptic splice site while splicing at the correct splice site was inhibited. Proper splicing of optimal and cryptic splice sites was restored in cells expressing BRR2‐wt but not in cells expressing RP mutants. Taken together, our data suggest that BRR2 is an important factor in 5′‐splice‐site recognition and that the RP‐linked mutations c.3260C>T (p.S1087L) and c.3269G>T (p.R1090L) affect this BRR2 function.


Chromosoma | 2008

Pontin is localized in nucleolar fibrillar centers

Zuzana Cvačková; Kai F. Albring; Karel Koberna; Anna Ligasová; Otmar Huber; Ivan Raška; David Staněk

Pontin is a multifunctional protein having roles in various cellular processes including regulation of gene expression. Here, we addressed Pontin intracellular localization using two different monoclonal antibodies directed against different Pontin epitopes. For the first time, Pontin was directly visualized in nucleoli where it co-localizes with Upstream Binding Factor and RNA polymerase I. Nucleolar localization of Pontin was confirmed by its detection in nucleolar extracts and by electron microscopy, which revealed Pontin accumulation specifically in the nucleolar fibrillar centers. Pontin localization in the nucleolus was dynamic and Pontin accumulated in large nucleolar dots mainly during S-phase. Pontin concentration in the large nucleolar dots correlated with reduced transcriptional activity of nucleoli. In addition, Pontin was found to associate with RNA polymerase I and to interact in a complex with c-Myc with rDNA sequences indicating that Pontin is involved in the c-Myc-dependent regulation of rRNA synthesis.

Collaboration


Dive into the David Staněk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martina Huranová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Zuzana Cvačková

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Wen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Eva Stejskalova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Ivan Novotný

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Michaela Blažíková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Michaela Krausova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge