Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian M. Carr is active.

Publication


Featured researches published by Ian M. Carr.


Nature Genetics | 2009

Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response

Gillian I. Rice; Jacquelyn Bond; Aruna Asipu; Rebecca L. Brunette; Iain W. Manfield; Ian M. Carr; Jonathan C. Fuller; Richard M. Jackson; Teresa Lamb; Tracy A. Briggs; Manir Ali; Hannah Gornall; Alec Aeby; Simon P Attard-Montalto; Enrico Bertini; C. Bodemer; Knut Brockmann; Louise Brueton; Peter Corry; Isabelle Desguerre; Elisa Fazzi; Angels Garcia Cazorla; Blanca Gener; B.C.J. Hamel; Arvid Heiberg; Matthew Hunter; Marjo S. van der Knaap; Ram Kumar; Lieven Lagae; Pierre Landrieu

Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.


American Journal of Human Genetics | 2002

Identification of Microcephalin, a Protein Implicated in Determining the Size of the Human Brain

Andrew Jackson; Helen Eastwood; Sandra M. Bell; Jimi Adu; Carmel Toomes; Ian M. Carr; Emma Roberts; Daniel J. Hampshire; Yanick J. Crow; Alan J. Mighell; Gulshan Karbani; Hussain Jafri; Yasmin Rashid; Robert F. Mueller; Alexander F. Markham; C. Geoffrey Woods

Primary microcephaly (MIM 251200) is an autosomal recessive neurodevelopmental condition in which there is a global reduction in cerebral cortex volume, to a size comparable with that of early hominids. We previously mapped the MCPH1 locus, for primary microcephaly, to chromosome 8p23, and here we report that a gene within this interval, encoding a BRCA1 C-terminal domain-containing protein, is mutated in MCPH1 families sharing an ancestral 8p23 haplotype. This gene, microcephalin, is expressed in the developing cerebral cortex of the fetal brain. Further study of this and related genes may provide important new insights into neocortical development and evolution.


Nature Genetics | 2008

Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy

Sandeep Uppal; Christine P. Diggle; Ian M. Carr; Colin W. G. Fishwick; Mushtaq Ahmed; Gamal H Ibrahim; Philip S Helliwell; Anna Latos-Bieleńska; Simon E. V. Phillips; Alexander F. Markham; Christopher Bennett; David T. Bonthron

Digital clubbing, recognized by Hippocrates in the fifth century BC, is the outward hallmark of pulmonary hypertrophic osteoarthropathy, a clinical constellation that develops secondary to various acquired diseases, especially intrathoracic neoplasm. The pathogenesis of clubbing and hypertrophic osteoarthropathy has hitherto been poorly understood, but a clinically indistinguishable primary (idiopathic) form of hypertrophic osteoarthropathy (PHO) is recognized. This familial disorder can cause diagnostic confusion, as well as significant disability. By autozygosity methods, we mapped PHO to chromosome 4q33–q34 and identified mutations in HPGD, encoding 15-hydroxyprostaglandin dehydrogenase, the main enzyme of prostaglandin degradation. Homozygous individuals develop PHO secondary to chronically elevated prostaglandin E2 levels. Heterozygous relatives also show milder biochemical and clinical manifestations. These findings not only suggest therapies for PHO, but also imply that clubbing secondary to other pathologies may be prostaglandin mediated. Testing for HPGD mutations and biochemical testing for HPGD deficiency in patients with unexplained clubbing might help to obviate extensive searches for occult pathology.


American Journal of Human Genetics | 2011

Mutations Causing Familial Biparental Hydatidiform Mole Implicate C6orf221 as a Possible Regulator of Genomic Imprinting in the Human Oocyte

David A. Parry; Clare V. Logan; Bruce E. Hayward; Michael Shires; Hanène Landolsi; Christine P. Diggle; Ian M. Carr; Cécile Rittore; Isabelle Touitou; Laurent Philibert; Rosemary A. Fisher; Masoumeh Fallahian; John Huntriss; Helen M. Picton; Saghira Malik; Graham R. Taylor; Colin A. Johnson; David T. Bonthron; Eamonn Sheridan

Familial biparental hydatidiform mole (FBHM) is the only known pure maternal-effect recessive inherited disorder in humans. Affected women, although developmentally normal themselves, suffer repeated pregnancy loss because of the development of the conceptus into a complete hydatidiform mole in which extraembryonic trophoblastic tissue develops but the embryo itself suffers early demise. This developmental phenotype results from a genome-wide failure to correctly specify or maintain a maternal epigenotype at imprinted loci. Most cases of FBHM result from mutations of NLRP7, but genetic heterogeneity has been demonstrated. Here, we report biallelic mutations of C6orf221 in three families with FBHM. The previously described biological properties of their respective gene families suggest that NLRP7 and C6orf221 may interact as components of an oocyte complex that is directly or indirectly required for determination of epigenetic status on the oocyte genome.


American Journal of Human Genetics | 2009

Mutation of the Variant α-Tubulin TUBA8 Results in Polymicrogyria with Optic Nerve Hypoplasia

Mohammad R. Abdollahi; Ewan E. Morrison; Tamara Sirey; Zoltán Molnár; Bruce E. Hayward; Ian M. Carr; Kelly Springell; C. Geoff Woods; Mushtaq Ahmed; Louise Hattingh; Peter Corry; Daniela T. Pilz; Neil Stoodley; Yanick J. Crow; Graham R. Taylor; David T. Bonthron; Eamonn Sheridan

The critical importance of cytoskeletal function for correct neuronal migration during development of the cerebral cortex has been underscored by the identities of germline mutations underlying a number of human neurodevelopmental disorders. The proteins affected include TUBA1A, a major alpha-tubulin isoform, and microtubule-associated components such as doublecortin, and LIS1. Mutations in these genes are associated with the anatomical abnormality lissencephaly, which is believed to reflect failure of neuronal migration. An important recent observation has been the dependence of cortical neuronal migration upon acetylation of alpha-tubulin at lysine 40 by the histone acetyltransferase Elongator complex. Here, we describe a recognizable autosomal recessive syndrome, characterized by generalized polymicrogyria in association with optic nerve hypoplasia (PMGOH). By autozygosity mapping, we show that the molecular basis for this condition is mutation of the TUBA8 gene, encoding a variant alpha-tubulin of unknown function that is not susceptible to the lysine 40 acetylation that regulates microtubule function during cortical neuron migration. Together with the unique expression pattern of TUBA8 within the developing cerebral cortex, these observations suggest a role for this atypical microtubule component in regulating mammalian brain development.


American Journal of Human Genetics | 2009

Mutations in CNNM4 Cause Jalili Syndrome, Consisting of Autosomal-Recessive Cone-Rod Dystrophy and Amelogenesis Imperfecta

David A. Parry; Alan J. Mighell; Walid El-Sayed; R.C. Shore; I. K. Jalili; Hélène Dollfus; Agnes Bloch-Zupan; Roman Carlos; Ian M. Carr; Louise Downey; Katharine M. Blain; David Mansfield; Mehdi Shahrabi; Mansour Heidari; Parissa Aref; Mohsen Abbasi; Michel Michaelides; Anthony T. Moore; Jennifer Kirkham; Chris F. Inglehearn

The combination of recessively inherited cone-rod dystrophy (CRD) and amelogenesis imperfecta (AI) was first reported by Jalili and Smith in 1988 in a family subsequently linked to a locus on chromosome 2q11, and it has since been reported in a second small family. We have identified five further ethnically diverse families cosegregating CRD and AI. Phenotypic characterization of teeth and visual function in the published and new families reveals a consistent syndrome in all seven families, and all link or are consistent with linkage to 2q11, confirming the existence of a genetically homogenous condition that we now propose to call Jalili syndrome. Using a positional-candidate approach, we have identified mutations in the CNNM4 gene, encoding a putative metal transporter, accounting for the condition in all seven families. Nine mutations are described in all, three missense, three terminations, two large deletions, and a single base insertion. We confirmed expression of Cnnm4 in the neural retina and in ameloblasts in the developing tooth, suggesting a hitherto unknown connection between tooth biomineralization and retinal function. The identification of CNNM4 as the causative gene for Jalili syndrome, characterized by syndromic CRD with AI, has the potential to provide new insights into the roles of metal transport in visual function and biomineralization.


Human Mutation | 2010

Genetic diagnosis of familial breast cancer using clonal sequencing

J.E. Morgan; Ian M. Carr; Eamonn Sheridan; Carol Chu; Bruce E. Hayward; Nick Camm; Helen Lindsay; Chris Mattocks; Alexander F. Markham; David T. Bonthron; Graham R. Taylor

Using conventional Sanger sequencing as a reference standard, we compared the sensitivity, specificity, and capacity of the Illumina GA II platform for the detection of TP53, BRCA1, and BRCA2 mutations in established tumor cell lines and DNA from patients with germline mutations. A total of 656 coding variants were identified in four cell lines and 65 patient DNAs. All of the known pathogenic mutations (including point mutations and insertions/deletions of up to 16 nucleotides) were identified, using a combination of the Illumina data analysis pipeline with custom and commercial sequence alignment software. In our configuration, clonal sequencing outperforms current diagnostic methods, providing a reduction in analysis times and in reagent costs compared with conventional sequencing. These improvements open the possibility of BRCA1/2 testing for a wider spectrum of at‐risk women, and will allow the genetic classification of tumors prior to the use of novel PARP inhibitors to treat BRCA‐deficient breast cancers. Hum Mutat 31:1–8, 2010.


Journal of Histochemistry and Cytochemistry | 2009

Ketohexokinase: Expression and Localization of the Principal Fructose-metabolizing Enzyme

Christine P. Diggle; Michael Shires; Derek Leitch; David M. Brooke; Ian M. Carr; A.F. Markham; Bruce E. Hayward; Aruna Asipu; David T. Bonthron

Ketohexokinase (KHK, also known as fructokinase) initiates the pathway through which most dietary fructose is metabolized. Very little is known about the cellular localization of this enzyme. Alternatively spliced KHK-C and KHK-A mRNAs are known, but the existence of the KHK-A protein isoform has not been demonstrated in vivo. Using antibodies to KHK for immunohistochemistry and Western blotting of rodent tissues, including those from mouse knockouts, coupled with RT-PCR assays, we determined the distribution of the splice variants. The highly expressed KHK-C isoform localized to hepatocytes in the liver and to the straight segment of the proximal renal tubule. In both tissues, cytoplasmic and nuclear staining was observed. The KHK-A mRNA isoform was observed exclusively in a range of other tissues, and by Western blotting, the presence of endogenous immunoreactive KHK-A protein was shown for the first time, proving that the KHK-A mRNA is translated into KHK-A protein in vivo, and supporting the suggestion that this evolutionarily conserved isoform is physiologically functional. However, the low levels of KHK-A expression prevented its immunohistochemical localization within these tissues. Our results highlight that the use of in vivo biological controls (tissues from knockout animals) is required to distinguish genuine KHK immunoreactivity from experimental artifact.


British Journal of Cancer | 1995

Prostate-specific membrane antigen: evidence for the existence of a second related human gene.

Jeffrey Leek; Nick Lench; B K Maraj; A. Bailey; Ian M. Carr; Sonja Andersen; Joanna Cross; Peter Whelan; Kenneth A. MacLennan; Diana M Meredith

Prostate-specific membrane antigen (PSM) is a glycoprotein recognised by the prostate-specific monoclonal antibody 7E11-C5, which was raised against the human prostatic carcinoma cell line LNCaP. A cDNA clone for PSM has been described. PSM is of clinical importance for a number of reasons. Radiolabelled antibody is being evaluated both as an imaging agent and as an immunotherapeutic in prostate cancer. Use of the PSM promoter has been advocated for gene therapy applications to drive prostate-specific gene expression. Although PSM is expressed in normal prostate as well as in primary and secondary prostatic carcinoma, different splice variants in malignant tissue afford the prospect of developing reverse transcription-polymerase chain reaction (RT-PCR)-based diagnostic screens for the presence of prostatic carcinoma cells in the circulation. We have undertaken characterisation of the gene for PSM in view of the proteins interesting characteristics. Unexpectedly, we have found that there are other sequences apparently related to PSM in the human genome and that PSM genomic clones map to two separate and distinct loci on human chromosome 11. Investigation of the function of putative PSM-related genes will be necessary to enable us to define fully the role of PSM itself in the development of prostatic carcinoma and in the clinical management of this malignancy.


Nature Methods | 2011

The proteomes of transcription factories containing RNA polymerases I, II or III

Svitlana Melnik; Binwei Deng; Argyris Papantonis; Sabyasachi Baboo; Ian M. Carr; Peter R. Cook

Human nuclei contain three RNA polymerases (I, II and III) that transcribe different groups of genes; the active forms of all three are difficult to isolate because they are bound to the substructure. Here we describe a purification approach for isolating active RNA polymerase complexes from mammalian cells. After isolation, we analyzed their protein content by mass spectrometry. Each complex represents part of the core of a transcription factory. For example, the RNA polymerase II complex contains subunits unique to RNA polymerase II plus various transcription factors but shares a number of ribonucleoproteins with the other polymerase complexes; it is also rich in polymerase II transcripts. We also describe a native chromosome conformation capture method to confirm that the complexes remain attached to the same pairs of DNA templates found in vivo.

Collaboration


Dive into the Ian M. Carr's collaboration.

Top Co-Authors

Avatar

David T. Bonthron

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Watson

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura A. Crinnion

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge