Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David T. Kirkpatrick is active.

Publication


Featured researches published by David T. Kirkpatrick.


Nature | 1997

Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins

David T. Kirkpatrick; Thomas D. Petes

A number of enzymes recognize and repair DNA lesions. The DNA-mismatch repair system corrects base–base mismatches andsmall loops, whereas the nucleotide-excision repair systemremoves pyrimidine dimers and other helix-distorting lesions. DNA molecules with mismatches or loops can arise as aconsequence of heteroduplex formation during meiotic recombination. In the yeast Saccharomyces cerevisiae, repair of mismatches results in gene conversion or restoration, and failure to repair the mismatch results in post-meiotic segregation (PMS) (Fig. 1). The ratio of gene-conversion to PMS events reflects the efficiency of DNA repair,. By examining the PMS patterns in yeast strains heterozygous for a mutant allele with a 26-base-pair insertion, we find that the repair of 26-base loops involves Msh2 (a DNA-mismatch repair protein) and Rad1 (a protein required for nucleotide-excision repair).


PLOS Genetics | 2005

Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies.

Melanie Legrand; Anja Forche; Anna Selmecki; Christine L. Chan; David T. Kirkpatrick; Judith Berman

Haplotype maps (HapMaps) reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP) segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion) has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.


Molecular and Cellular Biology | 1999

Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes.

David T. Kirkpatrick; Yuh Hwa Wang; Margaret Dominska; Jack D. Griffith; Thomas D. Petes

ABSTRACT Tandem repeats of the pentanucleotide 5′-CCGNN (where N indicates any base) were previously shown to exclude nucleosomes in vitro (Y.-H. Wang and J. D. Griffith, Proc. Natl. Acad. Sci. USA 93:8863–8867, 1996). To determine the in vivo effects of these sequences, we replaced the upstream regulatory sequences of the HIS4 gene ofSaccharomyces cerevisiae with either 12 or 48 tandem copies of CCGNN. Both tracts activated HIS4 transcription. We found that (CCGNN)12 tracts elevated meiotic recombination (hot spot activity), whereas the (CCGNN)48 tract repressed recombination (cold spot activity). In addition, a “pure” tract of (CCGAT)12 activated both transcription and meiotic recombination. We suggest that the cold spot activity of the (CCGNN)48 tract is related to the phenomenon of the suppressive interactions of adjacent hot spots previously described in yeast (Q.-Q. Fan, F. Xu, and T. D. Petes, Mol. Cell. Biol. 15:1679–1688, 1995; Q.-Q. Fan, F. Xu, M. A. White, and T. D. Petes, Genetics 145:661–670, 1997; T.-C. Wu and M. Lichten, Genetics 140:55–66, 1995; L. Xu and N. Kleckner, EMBO J. 16:5115–5128, 1995).


Molecular and Cellular Biology | 1991

Isolation and characterization of PEP3, a gene required for vacuolar biogenesis in Saccharomyces cerevisiae.

Robert A. Preston; Morris F. Manolson; Kathleen Becherer; Elaine M. Weidenhammer; David T. Kirkpatrick; Robin Wright; Elizabeth W. Jones

The Saccharomyces cerevisiae PEP3 gene was cloned from a wild-type genomic library by complementation of the carboxypeptidase Y deficiency in a pep3-12 strain. Subclone complementation results localized the PEP3 gene to a 3.8-kb DNA fragment. The DNA sequence of the fragment was determined; a 2,754-bp open reading frame predicts that the PEP3 gene product is a hydrophilic, 107-kDa protein that has no significant similarity to any known protein. The PEP3 predicted protein has a zinc finger (CX2CX13CX2C) near its C terminus that has spacing and slight sequence similarity to the adenovirus E1a zinc finger. A radiolabeled PEP3 DNA probe hybridized to an RNA transcript of 3.1 kb in extracts of log-phase and diauxic lag-phase cells. Cells bearing pep3 deletion/disruption alleles were viable, had decreased levels of protease A, protease B, and carboxypeptidase Y antigens, had decreased repressible alkaline phosphatase activity, and contained very few normal vacuolelike organelles by fluorescence microscopy and electron microscopy but had an abundance of extremely small vesicles that stained with carboxyfluorescein diacetate, were severely inhibited for growth at 37 degrees C, and were incapable of sporulating (as homozygotes). Fractionation of cells expressing a bifunctional PEP3::SUC2 fusion protein indicated that the PEP3 gene product is present at low abundance in both log-phase and stationary cells and is a vacuolar peripheral membrane protein. Sequence identity established that PEP3 and VPS18 (J. S. Robinson, T. R. Graham, and S. D. Emr, Mol. Cell. Biol. 11:5813-5824, 1991) are the same gene.


Eukaryotic Cell | 2007

Role of DNA Mismatch Repair and Double-Strand Break Repair in Genome Stability and Antifungal Drug Resistance in Candida albicans

Melanie Legrand; Christine L. Chan; Peter A. Jauert; David T. Kirkpatrick

ABSTRACT Drug resistance has become a major problem in the treatment of Candida albicans infections. Genome changes, such as aneuploidy, translocations, loss of heterozygosity, or point mutations, are often observed in clinical isolates that have become resistant to antifungal drugs. To determine whether these types of alterations result when DNA repair pathways are eliminated, we constructed yeast strains bearing deletions in six genes involved in mismatch repair (MSH2 and PMS1) or double-strand break repair (MRE11, RAD50, RAD52, and YKU80). We show that the mre11Δ/mre11Δ, rad50Δ/rad50Δ, and rad52Δ/rad52Δ mutants are slow growing and exhibit a wrinkly colony phenotype and that cultures of these mutants contain abundant elongated pseudohypha-like cells. These same mutants are susceptible to hydrogen peroxide, tetrabutyl hydrogen peroxide, UV radiation, camptothecin, ethylmethane sulfonate, and methylmethane sulfonate. The msh2Δ/msh2Δ, pms1Δ/pms1Δ, and yku80Δ/yku80Δ mutants exhibit none of these phenotypes. We observed an increase in genome instability in mre11Δ/mre11Δ and rad50Δ/rad50Δ mutants by using a GAL1/URA3 marker system to monitor the integrity of chromosome 1. We investigated the acquisition of drug resistance in the DNA repair mutants and found that deletion of mre11Δ/mre11Δ, rad50Δ/rad50Δ, or rad52Δ/rad52Δ leads to an increased susceptibility to fluconazole. Interestingly, we also observed an elevated frequency of appearance of drug-resistant colonies for both msh2Δ/msh2Δ and pms1Δ/pms1Δ (MMR mutants) and rad50Δ/rad50Δ (DSBR mutant). Our data demonstrate that defects in double-strand break repair lead to an increase in genome instability, while drug resistance arises more rapidly in C. albicans strains lacking mismatch repair proteins or proteins central to double-strand break repair.


Microbiology | 2008

Analysis of base excision and nucleotide excision repair in Candida albicans.

Melanie Legrand; Christine L. Chan; Peter A. Jauert; David T. Kirkpatrick

Candida albicans, clinically the most important human fungal pathogen, rapidly develops resistance to antifungal drugs. The acquisition of resistance has been linked to various types of genome changes. As part of an ongoing study of this problem, we investigated mutation, genome stability and drug resistance acquisition in C. albicans strains with deletions in the base excision repair (BER) genes NTG1, APN1 and OGG1, and in the nucleotide excision repair (NER) genes RAD2 and RAD10. The BER mutants did not exhibit any change in their susceptibility to DNA-damaging agents, but the NER mutants were extremely sensitive to UV-induced DNA damage. We did not observe any significant change in mutation, genome stability and antifungal drug sensitivity in the mutant strains we tested. However, we detected a number of intriguing phenotypic differences between strains bearing deletions in equivalent C. albicans and Saccharomyces cerevisiae BER and NER genes, which may be related to differences in the life cycles of these two fungi.


Cellular and Molecular Life Sciences | 1999

Roles of the DNA mismatch repair and nucleotide excision repair proteins during meiosis

David T. Kirkpatrick

Abstract. Numerous proteins are involved in the nucleotide excision repair (NER) and DNA mismatch repair (MMR) pathways. The function and specificity of these proteins during the mitotic cell cycle has been actively investigated, in large part due to the involvement of these systems in human diseases. In contrast, comparatively little is known about their functioning during meiosis. At least three repair pathways operate during meiosis in the yeast Saccharomyces cerevisiae to repair mismatches that occur as a consequence of heteroduplex formation in recombination. The first pathway is similar to the one acting during postreplicative mismatch repair in mitotically dividing cells, while two pathways are responsible for the repair of large loops during meiosis, using proteins from MMR and NER systems. Some MMR proteins also help prevent recombination between diverged sequences during meiosis, and act late in recombination to affect the resolution of crossovers. This review will discuss the current status of DNA mismatch repair and nucleotide excision repair proteins during meiosis, especially in the yeast S. cerevisiae.


Molecular and Cellular Biology | 2002

RAD1 Controls the Meiotic Expansion of the Human HRAS1 Minisatellite in Saccharomyces cerevisiae

Peter A. Jauert; Sharon N. Edmiston; Kathleen Conway; David T. Kirkpatrick

ABSTRACT Minisatellite DNA is repetitive DNA with a repeat unit length from 15 to 100 bp. While stable during mitosis, it destabilizes during meiosis, altering both in length and in sequence composition. The basis for this instability is unknown. To investigate the factors controlling minisatellite stability, a minisatellite sequence 3′ of the human HRAS1 gene was introduced into the Saccharomyces cerevisiae genome, replacing the wild-type HIS4 promoter. The minisatellite tract exhibited the same phenotypes in yeast that it exhibited in mammalian systems. The insertion stimulated transcription of the HIS4 gene; mRNA production was detected at levels above those seen with the wild-type promoter. The insertion stimulated meiotic recombination and created a hot spot for initiation of double-strand breaks during meiosis in the regions immediately flanking the repetitive DNA. The tract length altered at a high frequency during meiosis, and both expansions and contractions in length were detected. Tract expansion, but not contraction, was controlled by the product of the RAD1 gene. RAD1 is the first gene identified that controls specifically the expansion of minisatellite tracts. A model for tract length alteration based on these results is presented.


Yeast | 2005

A novel yeast genomic DNA library on a geneticin-resistance vector

Peter A. Jauert; Linnea E. Jensen; David T. Kirkpatrick

We have constructed a Saccharomyces cerevisiae genomic library utilizing a novel centromere‐containing vector bearing the TRP1 and KANMX4 G418‐resistance selectable markers. Random Sau3AI genomic DNA fragments with an average size of 6.4 kb were introduced into a unique BamHI site in the vectors polylinker. Six independent library pools were generated and the characteristics of these pools were determined. This library can be used to introduce low‐copy genomic DNA fragments into any strain that is not G418‐resistant, making it useful for low‐copy overexpression analysis or complementation of mutant phenotypes in strains that lack a suitable auxotrophy marker or only exhibit phenotypes on rich, undefined, growth media. Copyright


Fungal Genetics and Biology | 2011

The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans.

Melanie Legrand; Christine L. Chan; Peter A. Jauert; David T. Kirkpatrick

Genome rearrangements, a common feature of Candida albicans isolates, are often associated with the acquisition of antifungal drug resistance. In Saccharomyces cerevisiae, perturbations in the S-phase checkpoints result in the same sort of Gross Chromosomal Rearrangements (GCRs) observed in C. albicans. Several proteins are involved in the S. cerevisiae cell cycle checkpoints, including Mec1p, a protein kinase of the PIKK (phosphatidyl inositol 3-kinase-like kinase) family and the central player in the DNA damage checkpoint. Sgs1p, the ortholog of BLM, the Blooms syndrome gene, is a RecQ-related DNA helicase; cells from BLM patients are characterized by an increase in genome instability. Yeast strains bearing deletions in MEC1 or SGS1 are viable (in contrast to the inviability seen with loss of MEC1 in S. cerevisiae) but the different deletion mutants have significantly different phenotypes. The mec1Δ/Δ colonies have a wild-type colony morphology, while the sgs1Δ/Δ mutants are slow-growing, producing wrinkled colonies with pseudohyphal-like cells. The mec1Δ/Δ mutants are only sensitive to ethylmethane sulfonate (EMS), methylmethane sulfonate (MMS), and hydroxyurea (HU) but the sgs1Δ/Δ mutants exhibit a high sensitivity to all DNA-damaging agents tested. In an assay for chromosome 1 integrity, the mec1Δ/Δ mutants exhibit an increase in genome instability; no change was observed in the sgs1Δ/Δ mutants. Finally, loss of MEC1 does not affect sensitivity to the antifungal drug fluconazole, while loss of SGS1 leads to an increased susceptibility to fluconazole. Neither deletion elevated the level of antifungal drug resistance acquisition.

Collaboration


Dive into the David T. Kirkpatrick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bonnie Alver

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason H. Moore

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge