Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josyf C. Mychaleckyj is active.

Publication


Featured researches published by Josyf C. Mychaleckyj.


Science | 2013

Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor

Michelle I. Smith; Tanya Yatsunenko; Mark J. Manary; Indi Trehan; Rajhab S. Mkakosya; Jiye Cheng; Andrew L. Kau; Stephen S. Rich; Patrick Concannon; Josyf C. Mychaleckyj; Jie Liu; Eric R. Houpt; Jia V. Li; Elaine Holmes; Jeremy K. Nicholson; Dan Knights; Luke K. Ursell; Rob Knight; Jeffrey I. Gordon

Not Just Wasting Malnutrition is well known in Malawi, including a severe form—kwashiorkor—in which children do not simply waste away, they also suffer edema, liver damage, skin ulceration, and anorexia. Smith et al. (p. 548; see the Perspective by Relman) investigated the microbiota of pairs of twins in Malawian villages and found notable differences in the composition of the gut microbiota in children with kwashiorkor. In these children, a bacterial species related to Desulfovibrio, which has been associated with bowel disease and inflammation, was noticeable. When the fecal flora from either the healthy or the sick twin was transplanted into groups of germ-free mice, the mice that received the kwashiorkor sample started to lose weight, like their human counterpart. Genomic analyses of gut microbiota explain responses to dietary therapy for severe malnutrition. [Also see Perspective by Relman] Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.


Bioinformatics | 2010

Robust relationship inference in genome-wide association studies

Ani Manichaikul; Josyf C. Mychaleckyj; Stephen S. Rich; Kathy Daly; Michèle M. Sale; Wei-Min Chen

MOTIVATION Genome-wide association studies (GWASs) have been widely used to map loci contributing to variation in complex traits and risk of diseases in humans. Accurate specification of familial relationships is crucial for family-based GWAS, as well as in population-based GWAS with unknown (or unrecognized) family structure. The family structure in a GWAS should be routinely investigated using the SNP data prior to the analysis of population structure or phenotype. Existing algorithms for relationship inference have a major weakness of estimating allele frequencies at each SNP from the entire sample, under a strong assumption of homogeneous population structure. This assumption is often untenable. RESULTS Here, we present a rapid algorithm for relationship inference using high-throughput genotype data typical of GWAS that allows the presence of unknown population substructure. The relationship of any pair of individuals can be precisely inferred by robust estimation of their kinship coefficient, independent of sample composition or population structure (sample invariance). We present simulation experiments to demonstrate that the algorithm has sufficient power to provide reliable inference on millions of unrelated pairs and thousands of relative pairs (up to 3rd-degree relationships). Application of our robust algorithm to HapMap and GWAS datasets demonstrates that it performs properly even under extreme population stratification, while algorithms assuming a homogeneous population give systematically biased results. Our extremely efficient implementation performs relationship inference on millions of pairs of individuals in a matter of minutes, dozens of times faster than the most efficient existing algorithm known to us. AVAILABILITY Our robust relationship inference algorithm is implemented in a freely available software package, KING, available for download at http://people.virginia.edu/∼wc9c/KING.


Diabetes | 2008

HLA DR-DQ Haplotypes and Genotypes and Type 1 Diabetes Risk: Analysis of the Type 1 Diabetes Genetics Consortium Families

Henry A. Erlich; Ana M. Valdes; Janelle A. Noble; Joyce Carlson; Mike Varney; Pat Concannon; Josyf C. Mychaleckyj; John A. Todd; Persia Bonella; Anna Lisa Fear; Eva Lavant; Anthony Louey; Priscilla Moonsamy

OBJECTIVE—The Type 1 Diabetes Genetics Consortium has collected type 1 diabetic families worldwide for genetic analysis. The major genetic determinants of type 1 diabetes are alleles at the HLA-DRB1 and DQB1 loci, with both susceptible and protective DR-DQ haplotypes present in all human populations. The aim of this study is to estimate the risk conferred by specific DR-DQ haplotypes and genotypes. RESEARCH DESIGN AND METHODS:—Six hundred and seven Caucasian families and 38 Asian families were typed at high resolution for the DRB1, DQA1, and DQB1 loci. The association analysis was performed by comparing the frequency of DR-DQ haplotypes among the chromosomes transmitted to an affected child with the frequency of chromosomes not transmitted to any affected child. RESULTS—A number of susceptible, neutral, and protective DR-DQ haplotypes have been identified, and a statistically significant hierarchy of type 1 diabetes risk has been established. The most susceptible haplotypes are the DRB1*0301-DQA1*0501-DQB1*0201 (odds ratio [OR] 3.64) and the DRB1*0405-DQA1*0301-DQB1*0302, DRB1*0401-DQA1*0301-DQB*0302, and DRB1*0402-DQA1*0301-DQB1*0302 haplotypes (ORs 11.37, 8.39, and 3.63), followed by the DRB1*0404-DQA1*0301-DQB1*0302 (OR 1.59) and the DRB1*0801-DQB1*0401-DQB1*0402 (OR 1.25) haplotypes. The most protective haplotypes are DRB1*1501-DQA1*0102-DQB1*0602 (OR 0.03), DRB1*1401-DQA1*0101-DQB1*0503 (OR 0.02), and DRB1*0701-DQA1*0201-DQB1*0303 (OR 0.02). CONCLUSIONS—Specific combinations of alleles at the DRB1, DQA1, and DQB1 loci determine the extent of haplotypic risk. The comparison of closely related DR-DQ haplotype pairs with different type 1 diabetes risks allowed identification of specific amino acid positions critical in determining disease susceptibility. These data also indicate that the risk associated with specific HLA haplotypes can be influenced by the genotype context and that the trans-complementing heterodimer encoded by DQA1*0501 and DQB1*0302 confers very high risk.


Nature Genetics | 2008

Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci

Jason D. Cooper; Deborah J. Smyth; Adam M. Smiles; Vincent Plagnol; Neil M Walker; James E Allen; Kate Downes; Jeffrey C. Barrett; Barry Healy; Josyf C. Mychaleckyj; James H. Warram; John A. Todd

We carried out a meta-analysis of data from three genome-wide association (GWA) studies of type 1 diabetes (T1D), testing 305,090 SNPs in 3,561 T1D cases and 4,646 controls of European ancestry. We obtained further support for 4q27 (IL2-IL21, P = 1.9 × 10−8) and, after genotyping an additional 6,225 cases, 6,946 controls and 2,828 families, convincing evidence for four previously unknown and distinct risk loci in chromosome regions 6q15 (BACH2, P = 4.7 × 10−12), 10p15 (PRKCQ, P = 3.7 × 10−9), 15q24 (CTSH, P = 3.2 × 10−15) and 22q13 (C1QTNF6, P = 2.0 × 10−8).


Nature Genetics | 2002

Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk

Jianfeng Xu; S. Lilly Zheng; Akira Komiya; Josyf C. Mychaleckyj; Sarah D. Isaacs; Jennifer J. Hu; David A. Sterling; Ethan M. Lange; Gregory A. Hawkins; Aubrey R. Turner; Charles M. Ewing; Dennis A. Faith; Jill R. Johnson; Hiroyoshi Suzuki; Piroska Bujnovszky; Kathleen E. Wiley; Angelo M. DeMarzo; G. Steven Bova; Bao-Li Chang; M. Craig Hall; David L. McCullough; Alan W. Partin; Vahan S. Kassabian; John D. Carpten; Joan E. Bailey-Wilson; Jeffrey M. Trent; Jill A. Ohar; Eugene R. Bleecker; Patrick C. Walsh; William B. Isaacs

Deletions on human chromosome 8p22–23 in prostate cancer cells and linkage studies in families affected with hereditary prostate cancer (HPC) have implicated this region in the development of prostate cancer. The macrophage scavenger receptor 1 gene (MSR1, also known as SR-A) is located at 8p22 and functions in several processes proposed to be relevant to prostate carcinogenesis. Here we report the results of genetic analyses that indicate that mutations in MSR1 may be associated with risk of prostate cancer. Among families affected with HPC, we identified six rare missense mutations and one nonsense mutation in MSR1. A family-based linkage and association test indicated that these mutations co-segregate with prostate cancer (P = 0.0007). In addition, among men of European descent, MSR1 mutations were detected in 4.4% of individuals affected with non-HPC as compared with 0.8% of unaffected men (P = 0.009). Among African American men, these values were 12.5% and 1.8%, respectively (P = 0.01). These results show that MSR1 may be important in susceptibility to prostate cancer in men of both African American and European descent.


Diabetes | 2009

Genome-Wide Association Scan for Diabetic Nephropathy Susceptibility Genes in Type 1 Diabetes

Marcus G. Pezzolesi; G. David Poznik; Josyf C. Mychaleckyj; Andrew D. Paterson; Michelle T. Barati; Jon B. Klein; Daniel P.K. Ng; Grzegorz Placha; Luis Henrique Santos Canani; Jacek Bochenski; Daryl Waggott; Michael L. Merchant; Bozena Krolewski; Lucia Mirea; Krzysztof Wanic; Pisut Katavetin; Masahiko Kure; Paweł Wołkow; Jonathon Dunn; Adam M. Smiles; William H. Walker; Andrew P. Boright; Shelley B. Bull; Alessandro Doria; John J. Rogus; Stephen S. Rich; James H. Warram; Andrzej S. Krolewski

OBJECTIVE Despite extensive evidence for genetic susceptibility to diabetic nephropathy, the identification of susceptibility genes and their variants has had limited success. To search for genes that contribute to diabetic nephropathy, a genome-wide association scan was implemented on the Genetics of Kidneys in Diabetes collection. RESEARCH DESIGN AND METHODS We genotyped ∼360,000 single nucleotide polymorphisms (SNPs) in 820 case subjects (284 with proteinuria and 536 with end-stage renal disease) and 885 control subjects with type 1 diabetes. Confirmation of implicated SNPs was sought in 1,304 participants of the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, a long-term, prospective investigation of the development of diabetes-associated complications. RESULTS A total of 13 SNPs located in four genomic loci were associated with diabetic nephropathy with P < 1 × 10−5. The strongest association was at the FRMD3 (4.1 protein ezrin, radixin, moesin [FERM] domain containing 3) locus (odds ratio [OR] = 1.45, P = 5.0 × 10−7). A strong association was also identified at the CARS (cysteinyl-tRNA synthetase) locus (OR = 1.36, P = 3.1 × 10−6). Associations between both loci and time to onset of diabetic nephropathy were supported in the DCCT/EDIC study (hazard ratio [HR] = 1.33, P = 0.02, and HR = 1.32, P = 0.01, respectively). We demonstratedexpression of both FRMD3 and CARS in human kidney. CONCLUSIONS We identified genetic associations for susceptibility to diabetic nephropathy at two novel candidate loci near the FRMD3 and CARS genes. Their identification implicates previously unsuspected pathways in the pathogenesis of this important late complication of type 1 diabetes.


Diabetes | 2010

HLA Class I and Genetic Susceptibility to Type 1 Diabetes Results From the Type 1 Diabetes Genetics Consortium

Janelle A. Noble; Ana M. Valdes; Michael D. Varney; Joyce Carlson; Priscilla Moonsamy; Anna Lisa Fear; Julie A. Lane; Eva Lavant; Rebecca Rappner; Anthony Louey; Patrick Concannon; Josyf C. Mychaleckyj; Henry A. Erlich

OBJECTIVE We report here genotyping data and type 1 diabetes association analyses for HLA class I loci (A, B, and C) on 1,753 multiplex pedigrees from the Type 1 Diabetes Genetics Consortium (T1DGC), a large international collaborative study. RESEARCH DESIGN AND METHODS Complete eight-locus HLA genotyping data were generated. Expected patient class I (HLA-A, -B, and -C) allele frequencies were calculated, based on linkage disequilibrium (LD) patterns with observed HLA class II DRB1-DQA1-DQB1 haplotype frequencies. Expected frequencies were compared to observed allele frequencies in patients. RESULTS Significant type 1 diabetes associations were observed at all class I HLA loci. After accounting for LD with HLA class II, the most significantly type 1 diabetes–associated alleles were B*5701 (odds ratio 0.19; P = 4 × 10−11) and B*3906 (10.31; P = 4 × 10−10). Other significantly type 1 diabetes–associated alleles included A*2402, A*0201, B*1801, and C*0501 (predisposing) and A*1101, A*3201, A*6601, B*0702, B*4403, B*3502, C*1601, and C*0401 (protective). Some alleles, notably B*3906, appear to modulate the risk of all DRB1-DQA1-DQB1 haplotypes on which they reside, suggesting a class I effect that is independent of class II. Other class I type 1 diabetes associations appear to be specific to individual class II haplotypes. Some apparent associations (e.g., C*1601) could be attributed to strong LD to another class I susceptibility locus (B*4403). CONCLUSIONS These data indicate that HLA class I alleles, in addition to and independently from HLA class II alleles, are associated with type 1 diabetes.


American Journal of Human Genetics | 2003

Common Sequence Variants of the Macrophage Scavenger Receptor 1 Gene Are Associated with Prostate Cancer Risk

Jianfeng Xu; S. Lilly Zheng; Akira Komiya; Josyf C. Mychaleckyj; Sarah D. Isaacs; Bao-Li Chang; Aubrey R. Turner; Charles M. Ewing; Kathleen E. Wiley; Gregory A. Hawkins; Eugene R. Bleecker; Patrick C. Walsh; Deborah A. Meyers; William B. Isaacs

Rare germline mutations of macrophage scavenger receptor 1 (MSR1) gene were reported to be associated with prostate cancer risk in families with hereditary prostate cancer (HPC) and in patients with non-HPC (Xu et al. 2002). To further evaluate the role of MSR1 in prostate cancer susceptibility, at Johns Hopkins Hospital, we studied five common variants of MSR1 in 301 patients with non-HPC who underwent prostate cancer treatment and in 250 control subjects who participated in prostate cancer-screening programs and had normal digital rectal examination and PSA levels (<4 ng/ml). Significantly different allele frequencies between case subjects and control subjects were observed for each of the five variants (P value range.01-.04). Haplotype analyses provided consistent findings, with a significant difference in the haplotype frequencies from a global score test (P=.01). Because the haplotype that is associated with the increased risk for prostate cancer did not harbor any of the known rare mutations, it appears that the observed association of common variants and prostate cancer risk are independent of the effect of the known rare mutations. These results consistently suggest that MSR1 may play an important role in prostate carcinogenesis.


PLOS Genetics | 2013

Genome-Wide Association of Body Fat Distribution in African Ancestry Populations Suggests New Loci

Ching-Ti Liu; Keri L. Monda; Kira C. Taylor; Leslie A. Lange; Ellen W. Demerath; Walter Palmas; Mary K. Wojczynski; Jaclyn C. Ellis; Mara Z. Vitolins; Simin Liu; George J. Papanicolaou; Marguerite R. Irvin; Luting Xue; Paula J. Griffin; Michael A. Nalls; Adebowale Adeyemo; Jiankang Liu; Guo Li; Edward A. Ruiz-Narváez; Wei-Min Chen; Fang Chen; Brian E. Henderson; Robert C. Millikan; Christine B. Ambrosone; Sara S. Strom; Xiuqing Guo; Jeanette S. Andrews; Yan V. Sun; Thomas H. Mosley; Lisa R. Yanek

Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.


Diabetes | 2009

Confirmation of Genetic Associations at ELMO1 in the GoKinD Collection Supports Its Role as a Susceptibility Gene in Diabetic Nephropathy

Marcus G. Pezzolesi; Pisut Katavetin; Masahiko Kure; G. David Poznik; Jan Skupien; Josyf C. Mychaleckyj; Stephen S. Rich; James H. Warram; Andrzej S. Krolewski

OBJECTIVE To examine the association between single nucleotide polymorphisms (SNPs) in the engulfment and cell motility 1 (ELMO1) gene, a locus previously shown to be associated with diabetic nephropathy in two ethnically distinct type 2 diabetic populations, and the risk of nephropathy in type 1 diabetes. RESEARCH DESIGN AND METHODS Genotypic data from a genome-wide association scan (GWAS) of the Genetics of Kidneys in Diabetes (GoKinD) study collection were analyzed for associations across the ELMO1 locus. In total, genetic associations were assessed using 118 SNPs and 1,705 individuals of European ancestry with type 1 diabetes (885 normoalbuminuric control subjects and 820 advanced diabetic nephropathy case subjects). RESULTS The strongest associations in ELMO1 occurred at rs11769038 (odds ratio [OR] 1.24; P = 1.7 × 10−3) and rs1882080 (OR 1.23; P = 3.2 × 10−3) located in intron 16. Two additional SNPs, located in introns 18 and 20, respectively, were also associated with diabetic nephropathy. No evidence of association for variants previously reported in type 2 diabetes was observed in our collection. CONCLUSIONS Using GWAS data from the GoKinD collection, we comprehensively examined evidence of association across the ELMO1 locus. Our investigation marks the third report of associations in ELMO1 with diabetic nephropathy, further establishing its role in the susceptibility of this disease. There is evidence of allelic heterogeneity, contributed by the diverse genetic backgrounds of the different ethnic groups examined. Further investigation of SNPs at this locus is necessary to fully understand the commonality of these associations and the mechanism(s) underlying their role in diabetic nephropathy.

Collaboration


Dive into the Josyf C. Mychaleckyj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uma Nayak

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge