Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David T. Miller is active.

Publication


Featured researches published by David T. Miller.


American Journal of Human Genetics | 2010

Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies.

David T. Miller; Adam Mp; Swaroop Aradhya; Leslie G. Biesecker; Arthur R. Brothman; Nigel P. Carter; Deanna M. Church; John A. Crolla; Evan E. Eichler; Charles J. Epstein; W. Andrew Faucett; Lars Feuk; Jan M. Friedman; Ada Hamosh; Laird G. Jackson; Erin B. Kaminsky; Klaas Kok; Ian D. Krantz; Robert M. Kuhn; Charles Lee; James Ostell; Carla Rosenberg; Stephen W. Scherer; Nancy B. Spinner; Dimitri J. Stavropoulos; James Tepperberg; Erik C. Thorland; Joris Vermeesch; Darrel Waggoner; Michael S. Watson

Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype ( approximately 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.


The New England Journal of Medicine | 2008

Association between Microdeletion and Microduplication at 16p11.2 and Autism

Lauren A. Weiss; Yiping Shen; Joshua M. Korn; Dan E. Arking; David T. Miller; Ragnheidur Fossdal; Evald Saemundsen; Hreinn Stefansson; Todd Green; Orah S. Platt; Douglas M. Ruderfer; Christopher A. Walsh; David Altshuler; Aravinda Chakravarti; Rudolph E. Tanzi; Kari Stefansson; Susan L. Santangelo; James F. Gusella; Pamela Sklar; Bai-Lin Wu; Mark J. Daly

BACKGROUNDnAutism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role.nnnMETHODSnAs a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Childrens Hospital Boston and in a large population study in Iceland.nnnRESULTSnAmong the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Childrens Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Childrens Hospital Boston. The duplication also appeared to be a high-penetrance risk factor.nnnCONCLUSIONSnWe have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations.


Biochimica et Biophysica Acta | 1961

The digestive function of the epithelium of the small intestine: II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells☆

David T. Miller; Robert K. Crane

Abstract The epithelial brush border membrane has been isolated as a morphologically distinct entity from homogenates of intestinal mucosa and found to contain virtually all of the invertase and maltase activities of the unfractionated homogenate.


Journal of Medical Genetics | 2009

Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders

David T. Miller; Yiping Shen; Lauren A. Weiss; Joshua M. Korn; Irina Anselm; Carolyn Bridgemohan; Gerald F. Cox; Hope Dickinson; Jennifer K. Gentile; David J. Harris; Vijay Hegde; Rachel Hundley; Omar Khwaja; Sanjeev V. Kothare; Christina Luedke; Ramzi Nasir; Annapurna Poduri; Kiran Prasad; Peter Raffalli; Ann Reinhard; Sharon E. Smith; Magdi M. Sobeih; Janet S. Soul; Joan M. Stoler; Masanori Takeoka; Wen-Hann Tan; Joseph V. Thakuria; Robert Wolff; Roman Yusupov; James F. Gusella

Background: Segmental duplications at breakpoints (BP4–BP5) of chromosome 15q13.2q13.3 mediate a recurrent genomic imbalance syndrome associated with mental retardation, epilepsy, and/or electroencephalogram (EEG) abnormalities. Patients: DNA samples from 1445 unrelated patients submitted consecutively for clinical array comparative genomic hybridisation (CGH) testing at Children’s Hospital Boston and DNA samples from 1441 individuals with autism from 751 families in the Autism Genetic Resource Exchange (AGRE) repository. Results: We report the clinical features of five patients with a BP4–BP5 deletion, three with a BP4–BP5 duplication, and two with an overlapping but smaller duplication identified by whole genome high resolution oligonucleotide array CGH. These BP4–BP5 deletion cases exhibit minor dysmorphic features, significant expressive language deficits, and a spectrum of neuropsychiatric impairments that include autism spectrum disorder, attention deficit hyperactivity disorder, anxiety disorder, and mood disorder. Cognitive impairment varied from moderate mental retardation to normal IQ with learning disability. BP4–BP5 covers ∼1.5 Mb (chr15:28.719–30.298 Mb) and includes six reference genes and 1 miRNA gene, while the smaller duplications cover ∼500 kb (chr15:28.902–29.404 Mb) and contain three reference genes and one miRNA gene. The BP4–BP5 deletion and duplication events span CHRNA7, a candidate gene for seizures. However, none of these individuals reported here have epilepsy, although two have an abnormal EEG. Conclusions: The phenotype of chromosome 15q13.2q13.3 BP4–BP5 microdeletion/duplication syndrome may include features of autism spectrum disorder, a variety of neuropsychiatric disorders, and cognitive impairment. Recognition of this broader phenotype has implications for clinical diagnostic testing and efforts to understand the underlying aetiology of this syndrome.


Pediatrics | 2010

Clinical genetic testing for patients with autism spectrum disorders

Yiping Shen; Kira A. Dies; Ingrid A. Holm; Carolyn Bridgemohan; Magdi M. Sobeih; Elizabeth Caronna; Karen J. Miller; Jean A. Frazier; Iris Silverstein; Jonathan Picker; Laura Weissman; Peter Raffalli; Shafali S. Jeste; Laurie A. Demmer; Heather Peters; Stephanie J. Brewster; Sara J J Kowalczyk; Beth Rosen-Sheidley; Caroline McGowan; Andrew Walter Duda; Sharyn Lincoln; Kathryn R. Lowe; Alison Schonwald; Michael Robbins; Fuki M. Hisama; Robert Wolff; Ronald Becker; Ramzi Nasir; David K. Urion; Jeff M. Milunsky

BACKGROUND: Multiple lines of evidence indicate a strong genetic contribution to autism spectrum disorders (ASDs). Current guidelines for clinical genetic testing recommend a G-banded karyotype to detect chromosomal abnormalities and fragile X DNA testing, but guidelines for chromosomal microarray analysis have not been established. PATIENTS AND METHODS: A cohort of 933 patients received clinical genetic testing for a diagnosis of ASD between January 2006 and December 2008. Clinical genetic testing included G-banded karyotype, fragile X testing, and chromosomal microarray (CMA) to test for submicroscopic genomic deletions and duplications. Diagnostic yield of clinically significant genetic changes was compared. RESULTS: Karyotype yielded abnormal results in 19 of 852 patients (2.23% [95% confidence interval (CI): 1.73%–2.73%]), fragile X testing was abnormal in 4 of 861 (0.46% [95% CI: 0.36%–0.56%]), and CMA identified deletions or duplications in 154 of 848 patients (18.2% [95% CI: 14.76%–21.64%]). CMA results for 59 of 848 patients (7.0% [95% CI: 5.5%–8.5%]) were considered abnormal, which includes variants associated with known genomic disorders or variants of possible significance. CMA results were normal in 10 of 852 patients (1.2%) with abnormal karyotype due to balanced rearrangements or unidentified marker chromosome. CMA with whole-genome coverage and CMA with targeted genomic regions detected clinically relevant copy-number changes in 7.3% (51 of 697) and 5.3% (8 of 151) of patients, respectively, both higher than karyotype. With the exception of recurrent deletion and duplication of chromosome 16p11.2 and 15q13.2q13.3, most copy-number changes were unique or identified in only a small subset of patients. CONCLUSIONS: CMA had the highest detection rate among clinically available genetic tests for patients with ASD. Interpretation of microarray data is complicated by the presence of both novel and recurrent copy-number variants of unknown significance. Despite these limitations, CMA should be considered as part of the initial diagnostic evaluation of patients with ASD.


Genetics in Medicine | 2017

Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics

Sarah S. Kalia; Kathy Adelman; Sherri J. Bale; Wendy K. Chung; Christine M. Eng; James P. Evans; Gail E. Herman; Sophia B. Hufnagel; Teri E. Klein; Bruce R. Korf; Kent D. McKelvey; Kelly E. Ormond; C. Sue Richards; Christopher N. Vlangos; Michael S. Watson; Christa Lese Martin; David T. Miller

Disclaimer: These recommendations are designed primarily as an educational resource for medical geneticists and other healthcare providers to help them provide quality medical services. Adherence to these recommendations is completely voluntary and does not necessarily assure a successful medical outcome. These recommendations should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.To promote standardized reporting of actionable information from clinical genomic sequencing, in 2013, the American College of Medical Genetics and Genomics (ACMG) published a minimum list of genes to be reported as incidental or secondary findings. The goal was to identify and manage risks for selected highly penetrant genetic disorders through established interventions aimed at preventing or significantly reducing morbidity and mortality. The ACMG subsequently established the Secondary Findings Maintenance Working Group to develop a process for curating and updating the list over time. We describe here the new process for accepting and evaluating nominations for updates to the secondary findings list. We also report outcomes from six nominations received in the initial 15 months after the process was implemented. Applying the new process while upholding the core principles of the original policy statement resulted in the addition of four genes and removal of one gene; one gene did not meet criteria for inclusion. The updated secondary findings minimum list includes 59 medically actionable genes recommended for return in clinical genomic sequencing. We discuss future areas of focus, encourage continued input from the medical community, and call for research on the impact of returning genomic secondary findings.Genet Med 19 2, 249–255.


Biochimica et Biophysica Acta | 1961

The digestive function of the epithelium of the small intestine. I. An intracellular locus of disaccharide and sugar phosphate ester hydrolysis.

David T. Miller; Robert K. Crane

Abstract The relative distribution between the tissue and the medium of the products of hydrolysis in vitro of sucrose, maltose and glucose 1-phosphate by hamster small intestine was measured. The concentration relationships found indicate that hydrolysis of all three of these compounds takes place within the epithelial cells.


Annals of Human Genetics | 2005

Association of Common CRP Gene Variants with CRP Levels and Cardiovascular Events

David T. Miller; Robert Y.L. Zee; J. Suk Danik; Piotr Kozlowski; Daniel I. Chasman; Ross Lazarus; Nancy R. Cook; Paul M. Ridker; David J. Kwiatkowski

C‐reactive protein (CRP) is a well‐documented marker of atherosclerotic cardiovascular disease risk. We resequenced CRP to identify a comprehensive set of common SNP variants, then studied and replicated their association with baseline CRP level among apparently healthy subjects in the Womens Health Study (WHS; n = 717), Pravastatin Inflammation/CRP Evaluation trial (PRINCE; n = 1,110) and Physicians Health Study (PHS; n = 509) cohorts. The minor alleles of four SNPs were consistently associated in all three cohorts with higher CRP, while the minor alleles of two SNPs were associated with lower CRP (p < 0.05 for each). Single marker and haplotype analysis in all three cohorts were consistent with functional roles for the 5′‐flanking triallelic SNP −286C>T>A and the 3′‐UTR SNP 1846G>A. None of the SNPs associated with higher CRP were associated with risk of incident myocardial infarction (MI) or ischemic stroke in a prospective, nested case‐control study design from the PHS cohort (610 case‐control pairs). One SNP, −717A>G, was unrelated to CRP levels but associated with decreased risk of MI (p = 0.001). Taken together, these data imply significant interactions between both genetic and environmental contributions to the increased CRP levels that predict a greater risk of future atherothrombotic events in epidemiological studies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome

Leslie B. Gordon; Monica E. Kleinman; David T. Miller; Donna Neuberg; Anita Giobbie-Hurder; Marie Gerhard-Herman; Leslie B. Smoot; Catherine M. Gordon; Robert H. Cleveland; Brian D. Snyder; Brian Fligor; W. Robert Bishop; Paul Statkevich; Amy Regen; Andrew L. Sonis; Susan Riley; Christine Ploski; Annette Correia; Nicolle Quinn; Nicole J. Ullrich; Ara Nazarian; Marilyn G. Liang; Susanna Y. Huh; Armin Schwartzman; Mark W. Kieran

Hutchinson–Gilford progeria syndrome (HGPS) is an extremely rare, fatal, segmental premature aging syndrome caused by a mutation in LMNA that produces the farnesylated aberrant lamin A protein, progerin. This multisystem disorder causes failure to thrive and accelerated atherosclerosis leading to early death. Farnesyltransferase inhibitors have ameliorated disease phenotypes in preclinical studies. Twenty-five patients with HGPS received the farnesyltransferase inhibitor lonafarnib for a minimum of 2 y. Primary outcome success was predefined as a 50% increase over pretherapy in estimated annual rate of weight gain, or change from pretherapy weight loss to statistically significant on-study weight gain. Nine patients experienced a ≥50% increase, six experienced a ≥50% decrease, and 10 remained stable with respect to rate of weight gain. Secondary outcomes included decreases in arterial pulse wave velocity and carotid artery echodensity and increases in skeletal rigidity and sensorineural hearing within patient subgroups. All patients improved in one or more of these outcomes. Results from this clinical treatment trial for children with HGPS provide preliminary evidence that lonafarnib may improve vascular stiffness, bone structure, and audiological status.


American Journal of Medical Genetics | 2010

Deletions of NRXN1 (Neurexin-1) Predispose to a Wide Spectrum of Developmental Disorders

Michael S L Ching; Yiping Shen; Wen-Hann Tan; Shafali S. Jeste; Eric M. Morrow; Xiaoli Chen; Nahit Motavalli Mukaddes; Seung Yun Yoo; Ellen Hanson; Rachel Hundley; Christina Austin; Ronald Becker; Gerard T. Berry; Katherine Driscoll; Elizabeth C. Engle; Sandra L. Friedman; James F. Gusella; Fuki M. Hisama; Mira Irons; Tina Lafiosca; Elaine LeClair; David T. Miller; Michael Neessen; Jonathan Picker; Leonard Rappaport; Cynthia M. Rooney; Dean Sarco; Joan M. Stoler; Christopher A. Walsh; Robert Wolff

Research has implicated mutations in the gene for neurexin‐1 (NRXN1) in a variety of conditions including autism, schizophrenia, and nicotine dependence. To our knowledge, there have been no published reports describing the breadth of the phenotype associated with mutations in NRXN1. We present a medical record review of subjects with deletions involving exonic sequences of NRXN1. We ascertained cases from 3,540 individuals referred clinically for comparative genomic hybridization testing from March 2007 to January 2009. Twelve subjects were identified with exonic deletions. The phenotype of individuals with NRXN1 deletion is variable and includes autism spectrum disorders, mental retardation, language delays, and hypotonia. There was a statistically significant increase in NRXN1 deletion in our clinical sample compared to control populations described in the literature (Pu2009=u20098.9u2009×u200910−7). Three additional subjects with NRXN1 deletions and autism were identified through the Homozygosity Mapping Collaborative for Autism, and this deletion segregated with the phenotype. Our study indicates that deletions of NRXN1 predispose to a wide spectrum of developmental disorders.

Collaboration


Dive into the David T. Miller's collaboration.

Top Co-Authors

Avatar

Yiping Shen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Bai-Lin Wu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jonathan Picker

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

David J. Harris

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge