Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David T. Schoen is active.

Publication


Featured researches published by David T. Schoen.


Nano Letters | 2014

Hot-electron photodetection with a plasmonic nanostripe antenna.

Hamidreza Chalabi; David T. Schoen; Mark L. Brongersma

Planar metal-oxide-metal structures can serve as photodetectors that do not rely on the usual electron-hole pair generation in a semiconductor. Instead, absorbed light in one of the metals can produce a current of hot electrons when the incident photon energy exceeds the oxide barrier energy. Despite the desirable traits of convenient fabrication and room-temperature operation at zero bias of this type of device, the low power conversion efficiency has limited its use. Here, we demonstrate the benefits of reshaping one of the metallic contacts into a plasmonic stripe antenna. We use measurements of the voltage-dependence, spectral-dependence, stripe-width dependence, and polarization-dependence of the photocurrent to show that surface plasmon excitations can result in a favorable redistribution in the electric fields in the stripe that enhances the photocurrent. We also provide a theoretical model that quantifies the spectral photocurrent in terms of the electrical and optical properties of the junction. This model provides an accurate estimate of the bias dependence of the external quantum efficiency of different devices and shows that both the spatial and vectorial properties of the electric field distribution are important to its operation.


Nano Letters | 2010

High Speed Water Sterilization Using One-Dimensional Nanostructures

David T. Schoen; Alia P. Schoen; Liangbing Hu; Han Sun Kim; Sarah C. Heilshorn; Yi Cui

The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m(2)) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation.


Nano Letters | 2008

Large Anisotropy of Electrical Properties in Layer-Structured In2Se3 Nanowires

Hailin Peng; Chong Xie; David T. Schoen; Yi Cui

Layer-structured indium selenide (In 2Se 3) nanowires (NWs) have large anisotropy in both shape and bonding. In 2Se 3 NWs show two types of growth directions: [11-20] along the layers and [0001] perpendicular to the layers. We have developed a powerful technique combining high-resolution transmission electron microscopy (HRTEM) investigation with single NW electrical transport measurement, which allows us to correlate directly the electrical properties and structure of the same individual NWs. The NW devices were made directly on a 50 nm thick SiN x membrane TEM window for electrical measurements and HRTEM study. NWs with the [11-20] growth direction exhibit metallic behavior while the NWs grown along the [0001] direction show n-type semiconductive behavior. Excitingly, the conductivity anisotropy reaches 10 (3)-10 (6) at room temperature, which is 1-3 orders magnitude higher than the bulk ratio.


Nano Letters | 2009

Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy.

Keji Lai; Hailin Peng; Worasom Kundhikanjana; David T. Schoen; Chong Xie; Stefan Meister; Yi Cui; Michael A. Kelly; Zhi-Xun Shen

The bonding of single diferrocene [Fc(CH(2))(14)Fc, Fc = ferrocenyl] molecules on a metal surface can be enhanced by partial decomposition of Fc groups induced by the tunneling current in scanning tunneling microscopy. Although the isolated intact molecule is mobile on the terrace of Cu(110) at 78 K, the modified molecule is immobilized on the terrace. Calculations based on density functional theory indicate that the hollow site of the Cu(110) surface is the energetically favorable adsorption site for both ferrocene and the Fe-cyclopentadienyl complex, but the latter one possesses a much higher binding energy with the substrate.Driven by interactions due to the charge, spin, orbital, and lattice degrees of freedom, nanoscale inhomogeneity has emerged as a new theme for materials with novel properties near multiphase boundaries. As vividly demonstrated in complex metal oxides (see refs 1-5) and chalcogenides (see refs 6 and 7), these microscopic phases are of great scientific and technological importance for research in high-temperature superconductors (see refs 1 and 2), colossal magnetoresistance effect (see ref 4), phase-change memories (see refs 5 and 6), and domain switching operations (see refs 7-9). Direct imaging on dielectric properties of these local phases, however, presents a big challenge for existing scanning probe techniques. Here, we report the observation of electronic inhomogeneity in indium selenide (In(2)Se(3)) nanoribbons (see ref 10) by near-field scanning microwave impedance microscopy (see refs 11-13). Multiple phases with local resistivity spanning 6 orders of magnitude are identified as the coexistence of superlattice, simple hexagonal lattice and amorphous structures with approximately 100 nm inhomogeneous length scale, consistent with high-resolution transmission electron microscope studies. The atomic-force-microscope-compatible microwave probe is able to perform a quantitative subsurface electrical study in a noninvasive manner. Finally, the phase change memory function in In(2)Se(3) nanoribbon devices can be locally recorded with big signals of opposite signs.


Nano Letters | 2008

Void formation induced electrical switching in phase-change nanowires.

Stefan Meister; David T. Schoen; Mark A. Topinka; Andrew M. Minor; Yi Cui

Solid-state structural transformation coupled with an electronic property change is an important mechanism for nonvolatile information storage technologies, such as phase-change memories. Here we exploit phase-change GeTe single-nanowire devices combined with ex situ and in situ transmission electron microscopy to correlate directly nanoscale structural transformations with electrical switching and discover surprising results. Instead of crystalline-amorphous transformation, the dominant switching mechanism during multiple cycling appears to be the opening and closing of voids in the nanowires due to material migration, which offers a new mechanism for memory. During switching, composition change and the formation of banded structural defects are observed in addition to the expected crystal-amorphous transformation. Our method and results are important to phase-change memories specifically, but also to any device whose operation relies on a small scale structural transformation.


Journal of the American Chemical Society | 2009

Anisotropy of Chemical Transformation from In2Se3 to CuInSe2 Nanowires through Solid State Reaction

David T. Schoen; Hailin Peng; Yi Cui

In(2)Se(3) nanowires synthesized by the VLS technique are transformed by solid-state reaction with copper into high-quality single-crystalline CuInSe(2) nanowires. The process is studied by in situ transmission electron microscopy. The transformation temperature exhibits a surprising anisotropy, with In(2)Se(3) nanowires grown along their [0001] direction transforming at a surprisingly low temperature of 225 degrees C, while nanowires in a [11(2)0] orientation require a much higher temperature of 585 degrees C. These results offer a route to the synthesis of CuInSe(2) nanowires at a relatively low temperature as well as insight into the details of a transformation commonly used in the fabrication of thin-film solar cells.


Journal of the American Chemical Society | 2011

Template Engineering Through Epitope Recognition: A Modular, Biomimetic Strategy for Inorganic Nanomaterial Synthesis

Alia P. Schoen; David T. Schoen; Kelly N. L. Huggins; Manickam Adhimoolam Arunagirinathan; Sarah C. Heilshorn

Natural systems often utilize a single protein to perform multiple functions. Control over functional specificity is achieved through interactions with other proteins at well-defined epitope binding sites to form a variety of functional coassemblies. Inspired by the biological use of epitope recognition to perform diverse yet specific functions, we present a Template Engineering Through Epitope Recognition (TEThER) strategy that takes advantage of noncovalent, molecular recognition to achieve functional versatility from a single protein template. Engineered TEThER peptides span the biologic-inorganic interface and serve as molecular bridges between epitope binding sites on protein templates and selected inorganic materials in a localized, specific, and versatile manner. TEThER peptides are bifunctional sequences designed to noncovalently bind to the protein scaffold and to serve as nucleation sites for inorganic materials. Specifically, we functionalized identical clathrin protein cages through coassembly with designer TEThER peptides to achieve three diverse functions: the bioenabled synthesis of anatase titanium dioxide, cobalt oxide, and gold nanoparticles in aqueous solvents at room temperature and ambient pressure. Compared with previous demonstrations of site-specific inorganic biotemplating, the TEThER strategy relies solely on defined, noncovalent interactions without requiring any genetic or chemical modifications to the biomacromolecular template. Therefore, this general strategy represents a mix-and-match, biomimetic approach that can be broadly applied to other protein templates to achieve versatile and site-specific heteroassemblies of nanoscale biologic-inorganic complexes.


Nano Letters | 2013

The planar parabolic optical antenna.

David T. Schoen; Toon Coenen; F. Javier García de Abajo; Mark L. Brongersma; A. Polman

One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.


Nano Letters | 2015

Nanoscale Spatial Coherent Control over the Modal Excitation of a Coupled Plasmonic Resonator System

Toon Coenen; David T. Schoen; Sander A. Mann; S. R. K. Rodriguez; Benjamin J. M. Brenny; A. Polman; Mark L. Brongersma

We demonstrate coherent control over the optical response of a coupled plasmonic resonator by high-energy electron beam excitation. We spatially control the position of an electron beam on a gold dolmen and record the cathodoluminescence and electron energy loss spectra. By selective coherent excitation of the dolmen elements in the near field, we are able to manipulate modal amplitudes of bonding and antibonding eigenmodes. We employ a combination of CL and EELS to gain detailed insight in the power dissipation of these modes at the nanoscale as CL selectively probes the radiative response and EELS probes the combined effect of Ohmic dissipation and radiation.


ACS Nano | 2013

CuInSe2 Nanowires from Facile Chemical Transformation of In2Se3 and Their Integration in Single-Nanowire Devices

David T. Schoen; Hailin Peng; Yi Cui

Nanowire solar cells are receiving a significant amount of attention for their potential to improve light absorption and charge collection in photovoltaics. Single-nanowire solar cells offer the ability to investigate performance limits for macroscale devices, as well as the opportunity for in-depth structural characterization and property measurement in small working devices. Copper indium selenide (CIS) is a material uniquely suited to these investigations. Not only could nanowire solar cells of CIS perhaps allow efficient macroscale photovoltaics to be fabricated while reducing the amount of CIS required, important for a system with possible resource limitations, but it is also a photovoltaic material for which fundamental understanding has been elusive. We here present a recipe for a scaled up vapor liquid solid based synthesis of CIS nanowires, in-depth material and property correlation of single crystalline CIS nanowires, and the first report of a single CIS nanowire solar cell. The synthesis was accomplished by annealing copper-coated In2Se3 nanowires at a moderate temperature of 350 °C, leading to solid-state reaction forming CIS nanowires. These nanowires are p-type with a resitivity of 6.5 Ωcm. Evidence is observed for a strong diameter dependence on the nanowire transport properties. The single-nanowire solar cells have an open-circuit voltage of 500 mV and a short-circuit current of 2 pA under AM 1.5 illumination.

Collaboration


Dive into the David T. Schoen's collaboration.

Top Co-Authors

Avatar

Yi Cui

Stanford University

View shared research outputs
Top Co-Authors

Avatar

Mark L. Brongersma

Geballe Laboratory for Advanced Materials

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Polman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge