Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark L. Brongersma is active.

Publication


Featured researches published by Mark L. Brongersma.


Nature Materials | 2010

Plasmonics for extreme light concentration and manipulation

Jon A. Schuller; Edward S. Barnard; Wenshan Cai; Young Chul Jun; Justin S. White; Mark L. Brongersma

The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.


Advanced Materials | 2001

Plasmonics—A Route to Nanoscale Optical Devices

Stefan A. Maier; Mark L. Brongersma; Pieter G. Kik; Sheffer Meltzer; Ari Requicha; Harry A. Atwater

The further integration of optical devices will require the fabrication of waveguides for electromagnetic energy below the diffraction limit of light. We investigate the possibility of using arrays of closely spaced metal nanoparticles for this purpose. Coupling between adjacent particles sets up coupled plasmon modes that give rise to coherent propagation of energy along the array. A point dipole analysis predicts group velocities of energy transport that exceed 0.1c along straight arrays and shows that energy transmission and switching through chain networks such as corners (see Figure) and tee structures is possible at high efficiencies. Radiation losses into the far field are expected to be negligible due to the near-field nature of the coupling, and resistive heating leads to transmission losses of about 6 dB/lm for gold and silver particles. We analyze macroscopic analogues operating in the microwave regime consisting of closely spaced metal rods by experiments and full field electrodynamic simulations. The guiding structures show a high confinement of the electromagnetic energy and allow for highly variable geometries and switching. Also, we have fabricated gold nanoparticle arrays using electron beam lithography and atomic force microscopy manipulation. These plasmon waveguides and switches could be the smallest devices with optical functionality.


Nature Nanotechnology | 2015

Plasmon-induced hot carrier science and technology

Mark L. Brongersma; Naomi J. Halas; Peter Nordlander

The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.


Science | 2014

Dielectric gradient metasurface optical elements

Dianmin Lin; Pengyu Fan; Erez Hasman; Mark L. Brongersma

Extending the range of planar optics To build miniature optical devices, scientists are using silicon to replace bulky three-dimensional devices with flat versions. A patterned surface consisting of dense arrays of nanoscale silicon strips, which act as antennae, can be designed to work as transparent optical devices for the manipulation of light. Lin et al. used their versatile patterning technique to create a suite of planar optical elements. By patterning a 100-nm layer of silicon into a dense arrangement of nano-antennae, they were able to fabricate gratings, lenses, and axicons—a device that can add a shape to a propagating light beam. Science, this issue p. 298 Silicon-based metasurfaces can extend the range of planar optical devices. Gradient metasurfaces are two-dimensional optical elements capable of manipulating light by imparting local, space-variant phase changes on an incident electromagnetic wave. These surfaces have thus far been constructed from nanometallic optical antennas, and high diffraction efficiencies have been limited to operation in reflection mode. We describe the experimental realization and operation of dielectric gradient metasurface optical elements capable of also achieving high efficiencies in transmission mode in the visible spectrum. Ultrathin gratings, lenses, and axicons have been realized by patterning a 100-nanometer-thick Si layer into a dense arrangement of Si nanobeam antennas. The use of semiconductors can broaden the general applicability of gradient metasurfaces, as they offer facile integration with electronics and can be realized by mature semiconductor fabrication technologies.


Nature Materials | 2009

Engineering light absorption in semiconductor nanowire devices

Linyou Cao; Justin S. White; Joon-Shik Park; Jon A. Schuller; Bruce M. Clemens; Mark L. Brongersma

The use of quantum and photon confinement has enabled a true revolution in the development of high-performance semiconductor materials and devices. Harnessing these powerful physical effects relies on an ability to design and fashion structures at length scales comparable to the wavelength of electrons (approximately 1 nm) or photons (approximately 1 microm). Unfortunately, many practical optoelectronic devices exhibit intermediate sizes where resonant enhancement effects seem to be insignificant. Here, we show that leaky-mode resonances, which can gently confine light within subwavelength, high-refractive-index semiconductor nanostructures, are ideally suited to enhance and spectrally engineer light absorption in this important size regime. This is illustrated with a series of individual germanium nanowire photodetectors. This notion, together with the ever-increasing control over nanostructure synthesis opens up tremendous opportunities for the realization of a wide range of high-performance, nanowire-based optoelectronic devices, including solar cells, photodetectors, optical modulators and light sources.


Journal of The Optical Society of America A-optics Image Science and Vision | 2004

Geometries and materials for subwavelength surface plasmon modes

Rashid Zia; Mark D. Selker; Peter B. Catrysse; Mark L. Brongersma

Plasmonic waveguides can guide light along metal-dielectric interfaces with propagating wave vectors of greater magnitude than are available in free space and hence with propagating wavelengths shorter than those in vacuum. This is a necessary, rather than sufficient, condition for subwavelength confinement of the optical mode. By use of the reflection pole method, the two-dimensional modal solutions for single planar waveguides as well as adjacent waveguide systems are solved. We demonstrate that, to achieve subwavelength pitches, a metal-insulator-metal geometry is required with higher confinement factors and smaller spatial extent than conventional insulator-metal-insulator structures. The resulting trade-off between propagation and confinement for surface plasmons is discussed, and optimization by materials selection is described.


Nature Materials | 2014

Light Management for Photovoltaics Using High-Index Nanostructures

Mark L. Brongersma; Yi Cui; Shanhui Fan

High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells.


Nano Letters | 2010

Semiconductor nanowire optical antenna solar absorbers.

Linyou Cao; Pengyu Fan; Alok P. Vasudev; Justin S. White; Z. Yu; Wenshan Cai; Jon A. Schuller; Shanhui Fan; Mark L. Brongersma

Photovoltaic (PV) cells can serve as a virtually unlimited clean source of energy by converting sunlight into electrical power. Their importance is reflected in the tireless efforts that have been devoted to improving the electrical and structural properties of PV materials. More recently, photon management (PM) has emerged as a powerful additional means to boost energy conversion efficiencies. Here, we demonstrate an entirely new PM strategy that capitalizes on strong broad band optical antenna effects in one-dimensional semiconductor nanostructures to dramatically enhance absorption of sunlight. We show that the absorption of sunlight in Si nanowires (Si NWs) can be significantly enhanced over the bulk. The NWs optical properties also naturally give rise to an improved angular response. We propose that by patterning the silicon layer in a thin film PV cell into an array of NWs, one can boost the absorption for solar radiation by 25% while utilizing less than half of the semiconductor material (250% increase in the light absorption per unit volume of material). These results significantly advance our understanding of the way sunlight is absorbed by one-dimensional semiconductor nanostructures and provide a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach is universal to any semiconductor and a wide range of nanostructures; as such, it provides a new PV platform technology.


Science | 2010

The Case for Plasmonics

Mark L. Brongersma; Vladimir M. Shalaev

Light-induced surface excitations may offer a route to faster, smaller, and more efficient electronics as well as new technology opportunities. Just over a decade ago, the term “plasmonics” was coined for a promising new device technology that aims to exploit the unique optical properties of metallic nanostructures to enable routing and active manipulation of light at the nanoscale (1). At the same time, it was already well established that tiny metallic particles have a number of valuable optical properties that are derived from their ability to support collective light-induced electronic excitations, known as surface plasmons. Most notably, nanostructured metals dramatically alter the way light scatters from molecules, and this later led to the development of an important optical spectroscopy technique called surface-enhanced Raman spectroscopy (2–4).


Nano Letters | 2011

Plasmon Enhanced Solar-to-Fuel Energy Conversion

Isabell Thomann; Blaise A. Pinaud; Zhebo Chen; Bruce M. Clemens; Thomas F. Jaramillo; Mark L. Brongersma

Future generations of photoelectrodes for solar fuel generation must employ inexpensive, earth-abundant absorber materials in order to provide a large-scale source of clean energy. These materials tend to have poor electrical transport properties and exhibit carrier diffusion lengths which are significantly shorter than the absorption depth of light. As a result, many photoexcited carriers are generated too far from a reactive surface and recombine instead of participating in solar-to-fuel conversion. We demonstrate that plasmonic resonances in metallic nanostructures and multilayer interference effects can be engineered to strongly concentrate sunlight close to the electrode/liquid interface, precisely where the relevant reactions take place. On comparison of spectral features in the enhanced photocurrent spectra to full-field electromagnetic simulations, the contribution of surface plasmon excitations is verified. These results open the door to the optimization of a wide variety of photochemical processes by leveraging the rapid advances in the field of plasmonics.

Collaboration


Dive into the Mark L. Brongersma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry A. Atwater

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward S. Barnard

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wenshan Cai

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Z. Yu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

A. Polman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pieter G. Kik

Geballe Laboratory for Advanced Materials

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge