Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Thomae is active.

Publication


Featured researches published by David Thomae.


Nuclear Medicine and Biology | 2014

In vivo evaluation of 18F-labeled TCO for pre-targeted PET imaging in the brain

Leonie wyffels; David Thomae; Ann-Marie Waldron; Jens Fissers; Stefanie Dedeurwaerdere; Pieter Van der Veken; Jurgen Joossens; Sigrid Stroobants; Koen Augustyns; Steven Staelens

INTRODUCTION The tetrazine-trans-cylooctene cycloaddition using radiolabeled tetrazine or radiolabeled trans-cyclooctene (TCO) has been reported to be a very fast, selective and bioorthogonal reaction that could be useful for in vivo radiolabeling of molecules. We wanted to evaluate the in vivo biodistribution profile and brain uptake of (18)F-labeled TCO ([(18)F]TCO) to assess its potential for pre-targeted imaging in the brain. METHODS We evaluated the in vivo behavior of [(18)F]TCO via an ex vivo biodistribution study complemented by in vivo μPET imaging at 5, 30, 60, 90, 120 and 240 min post tracer injection. An in vivo metabolite study was performed at 5 min, 30 min and 120 min post [(18)F]TCO injection by RP-HPLC analysis of plasma and brain extracts. Incubation with human liver microsomes was performed to further evaluate the metabolite profile of the tracer. RESULTS μPET imaging and ex-vivo biodistribution revealed an high initial brain uptake of [(18)F]TCO (3.8%ID/g at 5 min pi) followed by a washout to 3.0%ID/g at 30 min pi. Subsequently the brain uptake increased again to 3.7%ID/g at 120 min pi followed by a slow washout until 240 min pi (2.9%ID/g). Autoradiography confirmed homogenous brain uptake. On the μPET images bone uptake became gradually visible after 120 min pi and was clearly visible at 240 min pi. The metabolite study revealed a fast metabolization of [(18)F]TCO in plasma and brain into three main polar radiometabolites. CONCLUSIONS Although [(18)F]TCO has previously been described to be a useful tracer for radiolabeling of tetrazine modified targeting molecules, our study indicates that its utility for in vivo chemistry and pre-targeted imaging will be limited. Although [(18)F]TCO clearly enters the brain, it is quickly metabolized with a non-specific accumulation of radioactivity in the brain and bone.


Nuclear Medicine and Biology | 2014

Synthesis and in vivo preclinical evaluation of an 18F labeled uPA inhibitor as a potential PET imaging agent

Johan Ides; David Thomae; Leonie wyffels; Christel Vangestel; Jonas Messagie; Jurgen Joossens; Filip Lardon; Pieter Van der Veken; Koen Augustyns; Sigrid Stroobants; Steven Staelens

INTRODUCTION The urokinase plasminogen activator (uPA) system is a proteolytic cascade involved in tumor invasion and metastasis. uPA and its inhibitor PAI-1 are described as biomarkers for breast cancer with the highest level of evidence. The present study describes the synthesis and first in vivo application of an activity based uPA PET probe. METHODS Based on the design of a small irreversible and selective uPA inhibitor we developed an (18)F-labeled activity based probe for uPA imaging. Human uPA expressing MDA-MB-231-luc2-GFP cells were inoculated in the mammary fat pads of nude mice and treated with the probe once tumors reached a volume of 150mm(3). Scans were performed at 0.25, 0.75, 1.5, 4 and 6h post injection. To evaluate tumor uptake in vivo and ex vivo data were gathered. Biodistribution data of the organs and tissues of interest were collected at all time points. Due to a relatively low tumor uptake, probe stability was further evaluated. RESULTS The uPA targeting PET tracer was produced in high purity and with good specific radioactivity. In vivo PET data showed a maximum tumor uptake of 2,51±0,32 %ID/g at 4h p.i. A significant correlation between in vivo and ex vivo tumor uptake calculation was found (R=0.75; p<0.01). Due to a high blood signal at all time points, probe stability was further examined revealing high plasma protein binding and low plasma stability. CONCLUSIONS In vivo and ex vivo results clearly demonstrate that uPA expressing tumors can be detected with non-invasive PET imaging. Stability tests suggest that further optimization is needed to provide a better tumor-to-background contrast.


Journal of Labelled Compounds and Radiopharmaceuticals | 2016

Identification and in vivo evaluation of a fluorine-18 rolipram analogue, [(18) F]MNI-617, as a radioligand for PDE4 imaging in mammalian brain.

David Thomae; Thomas Morley; Hsiaoju S. Lee; Olivier Barret; Cristian Constantinescu; Caroline Papin; Ronald M. Baldwin; Gilles Tamagnan; David Alagille

Phosphodiesterase (PDE) 4 is the most prevalent PDE in the central nervous system (CNS) and catalyzes hydrolysis of intracellular cAMP, a secondary messenger. By therapeutic inhibition of PDE4, intracellular cAMP levels can be stabilized, and the symptoms of psychiatric and neurodegenerative disorders including depression, memory loss and Parkinsons disease can be ameliorated. Radiotracers targeting PDE4 can be used to study PDE4 density and function, and evaluate new PDE4 therapeutics, in vivo in a non-invasive way, as has been shown using the carbon-11 labeled PDE4 inhibitor R-(-)-rolipram. Herein we describe a small series of rolipram analogs that contain fluoro- or iodo-substituents that could be used as fluorine-18 PET or iodine-123 SPECT PDE4 radiotracers. This series was evaluated with an in vitro binding assay and a 4-(fluoromethyl) derivative of rolipram, MNI-617, was identified, with a five-fold increase in affinity for PDE4 (Kd  = 0.26 nM) over R-(-)-rolipram (Kd  = 1.6 nM). A deutero-analogue d2 -[(18) F]MNI-617 was radiolabeled and produced in 23% yield with high (>5 Ci/µmol) specific activity and evaluated in non-human primate, where it rapidly entered the brain, with SUVs between 4 and 5, and with a distribution pattern consistent with that of PDE4.


Contrast Media & Molecular Imaging | 2016

Preclinical evaluation of [111In]MICA-401, an activity-based probe for SPECT imaging of in vivo uPA activity

Christel Vangestel; David Thomae; Jeroen Van Soom; Johan Ides; Leonie wyffels; Patrick Pauwels; Sigrid Stroobants; Pieter Van der Veken; Viktor Magdolen; Jurgen Joossens; Koen Augustyns; Steven Staelens

Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 are key players in cancer invasion and metastasis. Both uPA and PAI-1 have been described as prognostic biomarkers; however, non-invasive methods measuring uPA activity are lacking. We developed an indium-111 (111 In)-labelled activity-based probe to image uPA activity in vivo by single photon emission computed tomography (SPECT). A DOTA-conjugated uPA inhibitor was synthesized and radiolabelled with 111 In ([111 In]MICA-401), together with its inactive, hydrolysed form ([111 In]MICA-402). A biodistribution study was performed in mice (healthy and tumour-bearing), and tumour-targeting properties were evaluated in two different cancer xenografts (MDA-MB-231 and HT29) with respectively high and low levels of uPA expression in vitro, with either the active or hydrolysed radiotracer. MicroSPECT was performed 95 h post injection followed by ex vivo biodistribution. Tumour uptake was correlated with human and murine uPA expression determined by ELISA and immunohistochemistry (IHC). Biodistribution data with the hydrolysed probe [111 In]MICA-402 showed almost complete clearance 95 h post injection. The ex vivo biodistribution and SPECT data with [111 In]MICA-401 demonstrated similar tumour uptakes in the two models: ex vivo 5.68 ± 1.41%ID/g versus 5.43 ± 1.29%ID/g and in vivo 4.33 ± 0.80 versus 4.86 ± 1.18 for MDA-MB-231 and HT-29 respectively. Human uPA ELISA and IHC showed significantly higher uPA expression in the MDA-MB-231 tumours, while mouse uPA staining revealed similar staining intensities of the two tumours. Our data demonstrate non-invasive imaging of uPA activity in vivo, although the moderate tumour uptake and hence potential clinical translation of the radiotracer warrants further investigation. Copyright


Nuclear Medicine and Biology | 2015

Synthesis and preclinical evaluation of an 18F labeled PDE7 inhibitor for PET neuroimaging

David Thomae; Stijn Servaes; Naiara Vazquez; Leonie wyffels; Stefanie Dedeurwaerdere; Pieter Van der Veken; Jurgen Joossens; Koen Augustyns; Sigrid Stroobants; Steven Staelens

INTRODUCTION Phosphodiesterase 7 (PDE7) hydrolyzes selectively cyclic adenosine monophosphate (cAMP) which is an intracellular second messenger. PDE7 is expressed by 2 genes which are both present in the brain. To date there is no radiotracer for PDE7 imaging described and detection of PDE7 has only been performed by ex vivo techniques. In this report we describe the radiosynthesis of a novel fluorine-18 labeled radiotracer for PDE7 as well as the in vivo evaluation in mice to verify whether it has potential for imaging of PDE7 in the brain. METHODS We have synthesized a potent fluorinated PDE7 inhibitor, [(18)F]MICA-003 (PDE7 IC(50)=17 nM) and the corresponding tosylate precursor for radiolabeling. [(18)F]MICA-003 was injected in C57BL/6J mice (n=5) and in vivo images were acquired by μPET imaging. Radiometabolite analysis in plasma and brain was performed to determine the stability of the radioligand. RESULTS [(18)F]MICA-003 was synthesized by direct fluorination of the tosylate and produced in high decay corrected radiochemical yield (40%), high radiochemical purity (>98%) and high specific activity (86-497 GBq/μmol). μPET imaging revealed that [(18)F]MICA-003 crosses the blood brain barrier and has a homogenous distribution over the brain which washes out after the initial peak uptake. [(18)F]MICA-003 was quickly metabolized in plasma with 8.9%±0.59% of intact [(18)F]MICA-003 remaining at 5m in post injection. We observed the formation of three distinct radiometabolites of which the main radiometabolite was also detected in the brain in a proportion of 25.7±2.57% at this same time point. CONCLUSION We have described the synthesis and in vivo evaluation of a novel radioligand for PDE7 imaging. Despite high uptake in the brain and favorable kinetics in vivo, the presence of a brain penetrant radiometabolite makes [(18)F]MICA-003 unfavorable for the accurate quantification of PDE7 and more stable spiroquinazolinones analogs are in development.


Frontiers in Neurology | 2018

Noninvasive relative quantification of [11C]ABP688 PET imaging in mice versus an input function measured over an arteriovenous shunt

Jeroen Verhaeghe; Daniele Bertoglio; Lauren Kosten; David Thomae; Marleen Verhoye; Annemie Van der Linden; Leonie wyffels; Sigrid Stroobants; John Wityak; Celia Dominguez; Ladislav Mrzljak; Steven Staelens

Impairment of the metabotropic glutamate receptor 5 (mGluR5) has been implicated with various neurologic disorders. Although mGluR5 density can be quantified with the PET radiotracer [11C]ABP688, the methods for reproducible quantification of [11C]ABP688 PET imaging in mice have not been thoroughly investigated yet. Thus, this study aimed to assess and validate cerebellum as reference region for simplified reference tissue model (SRTM), investigate the feasibility of a noninvasive cardiac image-derived input function (IDIF) for relative quantification, to validate the use of a PET template instead of an MRI template for spatial normalization, and to determine the reproducibility and within-subject variability of [11C]ABP688 PET imaging in mice. Blocking with the mGluR5 antagonist MPEP resulted in a reduction of [11C]ABP688 binding of 41% in striatum (p < 0.0001), while no significant effect could be found in cerebellum (−4.8%, p > 0.99) indicating cerebellum as suitable reference region for mice. DVR-1 calculated using a noninvasive IDIF and an arteriovenous input function correlated significantly when considering the cerebellum as the reference region (striatum: DVR-1, r = 0.978, p < 0.0001). Additionally, strong correlations between binding potential calculated from SRTM (BPND) with DVR-1 based on IDIF (striatum: r = 0.980, p < 0.0001) and AV shunt (striatum: r = 0.987, p < 0.0001). BPND displayed higher discrimination power than VT values in determining differences between wild-types and heterozygous Q175 mice, an animal model of Huntingtons disease. Furthermore, we showed high agreement between PET- and MRI-based spatial normalization approaches (striatum: r = 0.989, p < 0.0001). Finally, both spatial normalization approaches did not reveal any significant bias between test-retest scans, with a relative difference below 5%. This study indicates that noninvasive quantification of [11C]ABP688 PET imaging is reproducible and cerebellum can be used as reference region in mice.


Epilepsia | 2017

Decreased levels of active uPA and KLK8 assessed by [111In]MICA-401 binding correlate with the seizure burden in an animal model of temporal lobe epilepsy

Stephan Missault; Lore Peeters; Halima Amhaoul; David Thomae; Annemie Van Eetveldt; Barbara Favier; Anagha Thakur; Jeroen Van Soom; Asla Pitkänen; Koen Augustyns; Jurgen Joossens; Steven Staelens; Stefanie Dedeurwaerdere

Urokinase‐type plasminogen activator (uPA) and kallikrein‐related peptidase 8 (KLK8) are serine proteases that contribute to extracellular matrix (ECM) remodeling after brain injury. They can be labelled with the novel radiotracer [111In]MICA‐401. As the first step in exploring the applicability of [111In]MICA‐401 in tracing the mechanisms of postinjury ECM reorganization in vivo, we performed in vitro and ex vivo studies, assessing [111In]MICA‐401 distribution in the brain in two animal models: kainic acid–induced status epilepticus (KASE) and controlled cortical impact (CCI)–induced traumatic brain injury (TBI).


Journal of Labelled Compounds and Radiopharmaceuticals | 2014

Automated one‐step radiosynthesis of the CB1 receptor imaging agent [18F]MK‐9470

David Thomae; Thomas Morley; Terence G. Hamill; Vincent M. Carroll; Caroline Papin; Nicole M. Twardy; H. Sharon Lee; Richard Hargreaves; Ronald M. Baldwin; Gilles Tamagnan; David Alagille

The fluorine-18-labeled positron emission tomography (PET) radiotracer [(18) F]MK-9470 is a selective, high affinity inverse agonist that has been used to image the cannabinoid receptor type 1 in human brain in healthy and disease states. This report describes a simplified, one-step [(18) F]radiofluorination approach using a GE TRACERlab FXFN module for the routine production of this tracer. The one-step synthesis, by [(18) F]fluoride displacement of a primary tosylate precursor, gives a six-fold increase in yield over the previous two-step method employing O-alkylation of a phenol precursor with 1,2-[(18) F]fluorobromoethane. The average radiochemical yield of [(18) F]MK-9470 using the one-step method was 30.3 ± 11.7% (n = 12), with specific activity in excess of 6 Ci/µmol and radiochemical purity of 97.2 ± 1.5% (n = 12), in less than 60 min. This simplified, high yielding, automated process was validated for routine GMP production of [(18) F]MK-9470 for clinical studies.


The Journal of Nuclear Medicine | 2018

Longitudinal characterization of mGluR5 using11C-ABP688 PET imaging in the Q175 mouse model of Huntington's disease

Daniele Bertoglio; Lauren Kosten; Jeroen Verhaeghe; David Thomae; Leonie wyffels; Sigrid Stroobants; John Wityak; Celia Dominguez; Ladislav Mrzljak; Steven Staelens

Metabotropic glutamate receptor 5 (mGluR5) represents a potential therapeutic target for Huntington disease. Using 11C-ABP688 (3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime), a noncompetitive and highly selective antagonist for mGluR5, we aimed to longitudinally characterize in vivo changes in mGluR5 by means of PET imaging in the Q175 mouse model of Huntington disease. Methods: 11C-ABP688 PET imaging, followed by a CT scan, was performed on 18 heterozygous mice and 18 wild-type (WT) littermates at 3 different time points (6, 9, and 13 mo old). 11C-ABP688 nondisplaceable binding potential (BPND) was calculated for each time point in striatum and cortex using the cerebellum as the reference region. In addition, voxel-based statistical parametric mapping (SPM) analysis was performed on BPND images. Postmortem validation of mGluR5 level and neuronal density was performed on the mice at 6 mo old. Results: The 11C-ABP688 BPND of heterozygous animals was significantly reduced at all time points in the striatum (−13.1%, −13.5%, and −14.2% at 6, 9, and 13 mo, respectively; P < 0.001 for all) and in the cortex (−9.8%, −10.2%, and −10.6%, respectively; P < 0.01 for all), when compared with WT animals. Longitudinal changes in 11C-ABP688 BPND were also found in heterozygous mice, showing a reduction at 13 mo compared with 6 mo (−10.4%, P < 0.05). SPM analysis confirmed reduced BPND in heterozygous compared with WT mice, as well as a time-related decline in 11C-ABP688 binding in the striatum of heterozygous mice. Postmortem analysis confirmed a mGluR5 decrease in both striatum (−36.6%; P < 0.01) and cortex (−16.6%; P < 0.05) in heterozygous mice, whereas no difference in neuronal density was found. Conclusion: In vivo imaging of mGluR5 using 11C-ABP688 PET/CT revealed a marked reduction in ligand binding in the striatum and cortex of heterozygous mice, compared with WT mice, as well as a temporal decline. This study suggests that 11C-ABP688 PET imaging is a potential biomarker to monitor the progression of, and therapeutic strategies for, Huntington disease.


PLOS ONE | 2018

MR-based spatial normalization improves [18F]MNI-659 PET regional quantification and detectability of disease effect in the Q175 mouse model of Huntington’s disease

Daniele Bertoglio; Jeroen Verhaeghe; Lauren Kosten; David Thomae; Annemie Van der Linden; Sigrid Stroobants; John Wityak; Celia Dominguez; Ladislav Mrzljak; Steven Staelens

The positron emission tomography (PET) tracer [18F]MNI-659, selective for phosphodiesterase 10A (PDE10A), is a promising tool to assess an early biomarker for Huntington’s disease (HD). In this study we investigated [18F]MNI-659 uptake in the Q175 mouse model of HD. Given the focal striatal distribution of PDE10A as well as the striatal atrophy occurring in HD, the spatial normalization approach applied during the processing could sensibly affect the accuracy of the regional quantification. We compared the use of a magnetic resonance images (MRI) template based on individual MRI over a PET and CT templates for regional quantification and spatial normalization of [18F]MNI-659 PET images. We performed [18F]MNI-659 PET imaging in six months old heterozygous (HET) Q175 mice and wild-type (WT) littermates, followed by X-ray computed tomography (CT) scan. In the same week, individual T2-weighted MRI were acquired. Spatial normalization and regional quantification of the PET/CT images was performed on MRI, [18F]MNI-659 PET, or CT template and compared to binding potential (BPND) using volumes manually delineated on the individual MR images. Striatal volume was significantly reduced in HET mice (-7.7%, p<0.0001) compared to WT littermates. [18F]MNI-659 BPND in striatum of HET animals was significantly reduced (p<0.0001) when compared to WT littermates using all three templates. However, BPND values were significantly higher for HET mice using the PET template compared to the MRI and CT ones (p<0.0001), with an overestimation at lower activities. On the other hand, the CT template spatial normalization introduced larger variability reducing the effect size. The PET and CT template-based approaches resulted in a lower accuracy in BPND quantification with consequent decrease in the detectability of disease effect. This study demonstrates that for [18F]MNI-659 brain PET imaging in mice the use of an MRI-based spatial normalization is recommended to achieve accurate quantification and fully exploit the detectability of disease effect.

Collaboration


Dive into the David Thomae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge