Leonie wyffels
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonie wyffels.
Epilepsy Research | 2011
Lieselotte Moerman; Leonie wyffels; Dominique Slaets; Robrecht Raedt; Paul Boon; Filip De Vos
P-glycoprotein transporters (P-gp) located at the blood-brain barrier (BBB) are likely to play a role in refractory epilepsy. In vitro studies already pointed out that several antiepileptic drugs (AEDs) are substrate of P-gp. This study proposes a new in vivo approach to investigate the interaction between some AEDs and P-gp located at the BBB. (11)C-desmethylloperamide ((11)C-dLop), a radiolabelled substrate of P-gp, was intravenously administrated after pretreatment with saline or AEDs (sodium valproate, levetiracetam, topiramate and phenytoin) at their human therapeutic and four times their therapeutic dose. The effect of the different pretreatment on the intracerebral concentration of (11)C-dLop was determined to indirectly investigate possible in vivo interactions between AEDs and P-gp. Pretreatment with levetiracetam, topiramate and phenytoin at therapeutic doses significantly decreased intracerebral concentration of (11)C-dLop. Pretreatment with a therapeutic dose of sodium valproate did not influence brain uptake of (11)C-dLop. In case of pretreatment with supratherapeutic doses of AED, (11)C-dLop brain uptake was not different compared to pretreatment with saline. The metabolisation rate of (11)C-dLop in plasma was unaltered, indicating that observed differences in brain uptake of the tracer were not due to pharmacokinetic changes. The following conclusion can be made: levetiracetam, topiramate and phenytoin demonstrate biphasic modulation of the BBB P-gp. At therapeutic doses they act as inducers of efflux, at supratherapeutic doses they have no effect on the efflux rate. Sodium valproate does not interact with P-gp at therapeutic nor at higher doses.
Journal of Medicinal Chemistry | 2009
Leonie wyffels; Giulio G. Muccioli; Sylvie De Bruyne; Lieselotte Moerman; Johan Sambre; Didier M. Lambert; Filip De Vos
Fatty acid amide hydrolyase (FAAH) is one of the main enzymes responsible for terminating the signaling of endocannabinoids in the brain. Imaging FAAH in vivo using PET or SPECT is important to deeper understanding of its role in neuropsychiatric disorders. However, at present, no radioligand is available for mapping the enzyme in vivo. Here, we synthesized 18 aryl analogues of anandamide, FAAHs endogenous substrate, and in vitro evaluated their potential as metabolic trapping tracers. Interaction studies with recombinant FAAH revealed good to very good interaction of the methoxy substituted aryl anandamide analogues 17, 18, 19, and 20 with FAAH and they were identified as competing substrates. Compounds 17 and 18 did not display significant binding to CB1 and CB2 cannabinoid receptors and stand out as potential candidate metabolic trapping tracers. They were successfully labeled with 11C in good yields and high radiochemical purity and displayed brain uptake in C57BL/6J mice. Radioligands [11C]-17 and [11C]-18 merit further investigation in vivo.
The Journal of Nuclear Medicine | 2013
Tine Wyckhuys; Jeroen Verhaeghe; Leonie wyffels; Xavier Langlois; Mark Schmidt; Sigrid Stroobants; Steven Staelens
Abnormal glutamate transmission is involved in various neurologic disorders, such as epilepsy, schizophrenia, and Parkinson disease. At present, no imaging techniques are capable of measuring acute fluctuations in endogenous glutamate levels in vivo. We evaluated the potential of 11C-ABP688, a PET ligand that binds to an allosteric site of the metabotropic glutamate 5 receptor, in rats by using small-animal PET and β-microprobes after pharmacologic challenges with N-acetylcysteine (NAc) and MK-801. Both compounds are known to induce increases in endogenous glutamate levels. Methods: Three experiments with 11C-ABP688 were performed to validate our study setup: first, metabolite analyses during workup (n = 3) and after a selected treatment (n = 3); second, a test–retest (n = 12) small-animal PET experiment (1 h scan; 27.75 MBq of 11C-ABP688 administered intravenously; <3 nmol/kg); and third, a small-animal PET and β-microprobe cold blocking study (n = 6/condition) with unlabeled ABP688. After this experimental validation, rats were pretreated with either NAc (intravenous infusion of 50 mg/kg/h) or MK-801 (0.16 mg/kg; given intraperitoneally); this step was followed by small-animal PET with 11C-ABP688 (n = 12) or β-microprobe measurements (n = 10/condition) of 11C-ABP688. Time–activity curves were extracted, and the nondisplaceable binding potential (BPND) was calculated by use of the simplified reference tissue model with the cerebellum as a reference region. Results: 11C-ABP688 BPND measurements were highly reproducible (test–retest), and both small-animal PET and β-microprobes were able to discriminate changes in 11C-ABP688 binding (cold blocking). The average small-animal PET BPND measurements in the test experiment for the caudate putamen, frontal cortex, cerebral cortex, hippocampus, and thalamus were 2.58, 1.40, 1.60, 1.86, and 1.09, respectively. However, no significant differences in BPND measurements were observed with small-animal PET in the test and retest conditions on the one hand and the NAc and MK-801 conditions on the other hand for any of these regions. When β-microprobes were used, the average BPND in the caudate putamen was 0.94, and no significant changes in the test and MK-801 conditions were observed. Conclusion: Pharmacologic challenges with NAc and MK-801 did not affect the 11C-ABP688 BPND in the rat brain. These data suggest that the in vivo affinity of 11C-ABP688 for binding to an allosteric site of the metabotropic glutamate 5 receptor is not modulated by changes in glutamate levels and that 11C-ABP688 is not capable of measuring acute fluctuations in endogenous levels of glutamate in vivo in the rat brain.
Nuclear Medicine and Biology | 2010
Leonie wyffels; Giulio G. Muccioli; Coco N. Kapanda; Geoffray Labar; Sylvie De Bruyne; Filip De Vos; Didier M. Lambert
INTRODUCTIONnFatty acid amide hydrolase (FAAH) is part of the endocannabinoid system (ECS) and has been linked to the aetiology of several neurological and neuropsychiatric disorders. So far no useful PET or SPECT tracer for in vivo visualisation of FAAH has been reported. We synthesized and evaluated a carbon-11-labeled URB597 analogue, biphenyl-3-yl [(11)C]-4-methoxyphenylcarbamate or [(11)C]-1, as potential FAAH imaging agent.nnnMETHODSnThe inhibitory activity of 1 was determined in vitro using recombinant FAAH. Radiosynthesis of [(11)C]-1 was performed by methylation using [(11)C]-CH(3)I, followed by HPLC purification. Biological evaluation was done by biodistribution studies in wild-type and FAAH knock-out mice, and by ex vivo and in vivo metabolite analysis. The influence of URB597 pretreatment on the metabolisation profile was assessed.nnnRESULTSn[(11)C]-1 was obtained in good yields and high radiochemical purity. Biodistribution studies revealed high brain uptake in wild-type and FAAH knock-out mice, but no retention of radioactivity could be demonstrated. Metabolite analysis and URB597 pretreatment confirmed the non-FAAH-mediated metabolisation of [(11)C]-1. The inhibition mechanism was determined to be reversible. In addition, the inhibition of URB597 appeared slowly reversible.nnnCONCLUSIONSnAlthough [(11)C]-1 inhibits FAAH in vitro and displays high brain uptake, the inhibition mechanism seems to deviate from the proposed carbamylation mechanism. Consequently, it does not covalently bind to FAAH and will not be useful for mapping the enzyme in vivo. However, it represents a potential starting point for the development of in vivo FAAH imaging tools.
Bioorganic & Medicinal Chemistry | 2009
Leonie wyffels; Sylvie De Bruyne; Peter Blanckaert; Didier M. Lambert; Filip De Vos
Fatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for terminating the signaling of endocannabinoids, including anandamide. This paper is the first report of the synthesis, [123I]-labeling and in vitro and in vivo evaluation of anandamide analogues as potential metabolic trapping radioligands for in vivo evaluation of brain FAAH. N-(2-iodoethyl)linoleoylamide (2) and N-(2-iodoethyl)arachidonylamide (4) were synthesized with good yields (75% and 86%, respectively) in a two steps procedure starting from their respective acids. In vitro analyses, performed using recombinant rat FAAH and [3H]-anandamide, demonstrated interaction of 2 and 4 with FAAH (IC50 values of 5.78 microM and 3.14 microM, respectively). [123I]-2 and [123I]-4 were synthesized with radiochemical yields of 21% and 12%, respectively, and radiochemical purities were > 90%. Biodistribution studies in mice demonstrated brain uptake for both tracers (maximum values of 1.23%ID/g at 3 min pi for [123I]-2 and 0.58%ID/g at 10 min pi for [123I]-4). However, stability studies demonstrated the sensitivity of both tracers to dehalogenation.
European Journal of Nuclear Medicine and Molecular Imaging | 2009
Peter Blanckaert; Ingrid Burvenich; Steven Staelens; S. De Bruyne; Lieselotte Moerman; Leonie wyffels; F. De Vos
PurposeP-glycoprotein (Pgp) is an efflux protein found amongst other locations in the blood–brain barrier. It is important to investigate the effect of Pgp modulation on clinically used brain tracers, because brain uptake of the tracer can be altered by blocking of the Pgp efflux transporter. The function of Pgp can be blocked with cyclosporin A.MethodsWe investigated the effect of cyclosporin A administration on the biodistribution of [123I]R91150 in rodents, and the effect of Pgp blocking on the quality of multipinhole μSPECT imaging with [123I]R91150. The influence of increasing doses of cyclosporin A on the brain uptake of [123I]R91150 was investigated in NMRI mice. A biodistribution study with [123I]R91150 was performed in male Sprague-Dawley rats pretreated with cyclosporin A and not pretreated. Brain uptake of [123I]R91150 after cyclosporin A injection was compared to the brain uptake in untreated animals, and a displacement study with ketanserin was performed in both groups. A multipinhole μSPECT brain imaging study was also performed using a Milabs U-SPECT-II camera in male Sprague-Dawley rats. To exclude the effect of possible metabolites, a metabolite study was also performed.ResultsAt the highest cyclosporin A dose (50xa0mg/kg), a sevenfold increase in brain radioactivity concentration was observed in NMRI mice. Also, a dose-response relationship was established between the dose of cyclosporin A and the brain uptake of [123I]R91150 in mice. Compared to the control group, a five-fold increase in [123I]R91150 radioactivity concentration was observed in the brain of Sprague-Dawley rats after cyclosporin A treatment (50xa0mg/kg). Radioactivity concentration in the frontal cortex increased from 0.24±0.0092 to 1.58±0.097% injected dose per gram of tissue after treatment with cyclosporin A (at the 1-h time-point). Blood radioactivity concentrations did not increase to the same extent. The cortical activity was displaced by administration of ketanserin. A metabolite study confirmed that there was no increased metabolism of [123I]R91150 due to cyclosporin A. The visual quality of multipinhole μSPECT images with [123I]R91150 in Sprague-Dawley rats improved markedly after cyclosporin A pretreatment.ConclusionFrom the results obtained in the biodistribution studies, it can be concluded that [123I]R91150 is a substrate for Pgp in rodents. A relationship between the administered dose of cyclosporin A and the increase in [123I]R91150 brain radioactivity concentration was established. The overall quality of our multipinhole μSPECT images with [123I]R91150 in rats improved markedly after pretreatment of the animals with cyclosporin A.
The Journal of Nuclear Medicine | 2016
Filipe Elvas; Christel Vangestel; Koon Pak; Peter Vermeulen; Brian Gray; Sigrid Stroobants; Steven Staelens; Leonie wyffels
Noninvasive imaging of cell death can provide an early indication of the efficacy of tumor treatment, aiding clinicians in distinguishing responding patients from nonresponding patients early on. 99mTc-duramycin is a SPECT tracer for cell death imaging. In this study, our aim was to validate the use of 99mTc-duramycin for imaging the early response of tumors to treatment. Methods: An in vitro binding assay was performed on COLO205 cells treated with 5-fluorouracil (3.1, 31, or 310 μM) and oxaliplatin (0.7 or 7 μM) or radiation (2 or 4.5 Gy). 99mTc-duramycin cell binding and the levels of cell death were evaluated after treatment. In vivo imaging was performed on 4 groups of CD1-deficient mice bearing COLO205 human colorectal cancer tumors. Each group included 6 tumors. The first group was given irinotecan (100 mg/kg), the second oxaliplatin (5 mg/kg), the third irinotecan (80 mg/kg) plus oxaliplatin (5 mg/kg), and the fourth vehicle (0.9% NaCl and 5% glucose). For radiotherapy studies, COLO205 tumors received 4.5 Gy, 2 fractions of 4.5 Gy in a 24-h interval, pretreatment with an 80 mg/kg dose of irinotecan combined with 2 fractions of 4.5 Gy in a 24-h interval, or no treatment (n = 5–6/group). Therapy response was evaluated by 99mTc-duramycin SPECT 24 h after the last dose of therapy. Blocking was used to confirm tracer specificity. Radiotracer uptake in the tumors was validated ex vivo using γ-counting, cleaved caspase-3, and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling (TUNEL) histology. Results: Chemotherapy and radiotherapy increased 99mTc-duramycin binding to COLO205 cells in a concentration/dose- and time-dependent manner, which correlated well with cell death levels (P < 0.05) as analyzed by annexin V and caspase 3/7 activity. In vivo, 99mTc-duramycin uptake in COLO205 xenografts was increased 2.3- and 2.8-fold (P < 0.001) in mice treated with irinotecan and combination therapy, respectively. Blocking with unlabeled duramycin demonstrated specific binding of the radiotracer. After tumor irradiation with 4.5 Gy, 99mTc-duramycin uptake in tumors increased significantly (1.24 ± 0.07 vs. 0.57 ± 0.08 percentage injected dose per gram in the unirradiated tumors; P < 0.001). γ-counting of radioactivity in the tumors positively correlated with cleaved caspase-3 (r = 0.85, P < 0.001) and TUNEL (r = 0.81, P < 0.001) staining. Conclusion: We demonstrated that 99mTc-duramycin can be used to image induction of cell death early after chemotherapy and radiotherapy. It holds potential to be translated into clinical use for early assessment of treatment response.
Journal of Pharmacology and Experimental Therapeutics | 2014
Tine Wyckhuys; Leonie wyffels; Xavier Langlois; Mark Schmidt; Sigrid Stroobants; Steven Staelens
Using [18F]fluorodeoxyglucose μ–positron emission tomography ([18F]FDG μPET), we compared subanesthetic doses of memantine and ketamine on their potential to induce increases in brain activation. We also studied the reversal effect of the well-known metabotropic glutamate receptor (mGluR)-2/3 agonist LY404039 [(−)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid] and the novel mGluR2 positive allosteric modulator (PAM) JNJ-42153605 [3-cylcopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-trifluoromethyl [1,2,4] triazolo[4,3-a]pyridine]. First, rats (n = 12) were subjected to LY404039 (10 mg/kg s.c.) or vehicle, 30 minutes prior to saline, ketamine (30 mg/kg i.p.), or memantine (20 mg/kg i.p.). Second, rats (n = 12) were subjected to 2.5 mg/kg or 10 mg/kg mGluR2 PAM JNJ-42153605 or vehicle (s.c.), 30 minutes prior to memantine (20 mg/kg i.p.) or saline. Fifteen minutes later, [18F]FDG was injected (37 MBq i.v.) followed by a μPET/computed tomography scan. The increase due to memantine is significant for all relevant brain areas, whereas for ketamine this is not the case. Standard uptake values (SUVs) of the LY404039 pretreated and memantine-challenged group display a full reversal. Pretreatment with JNJ-42153605 also dose-dependently decreases SUV with a full reversal as well (for 10 mg/kg). Moreover, specificity of JNJ-42153605 is reached at this dose. In conclusion, this μPET experiment clearly indicates that subanesthetic doses of memantine induce significant increases of [18F]FDG SUVs in discrete brain areas and that the novel mGluR2 PAM has the capacity to dose-dependently and specifically reverse memantine-induced brain activation.
Nuclear Medicine and Biology | 2010
Sylvie De Bruyne; Giuseppe La Regina; Steven Staelens; Leonie wyffels; Steven Deleye; Romano Silvestri; Filip De Vos
INTRODUCTIONnSince MAO-A is an enzyme involved in the metabolism of neurotransmitters, fluctuations in MAO-A functionality are associated with psychiatric and neurological disorders as well as with tobacco addiction and behaviour. This study reports the radiolabelling of two [(11)C]-labelled pyrrole-2-carboxamide derivates, RS 2315 and RS 2360, along with the characterization of their in vivo properties.nnnMETHODSnThe radiolabelling of [(11)C]-RS 2315 and [(11)C]-RS 2360 was accomplished by alkylation of their amide precursors with [(11)C]CH(3)I. Biodistribution, blocking and metabolite studies of both tracers were performed in NMRI mice. Finally, a PET study in Sprague-Dawley rats was performed for [(11)C]-RS 2360.nnnRESULTSnBoth tracers were obtained in a radiochemical yield of approximately 30% with radiochemical purity of >98%. Biodistribution studies showed high brain uptake followed by rapid brain clearance for both radiotracers. In the brain, [(11)C]-RS 2360 was more stable than [(11)C]-RS 2315. Blocking studies in mice could not demonstrate specificity of [(11)C]-RS 2315 towards MAO-A or MAO-B. The blocking and imaging study with [(11)C]-RS 2360 on the other hand indicated specific binding in MAO-A at the earliest time points.nnnCONCLUSIONSn[(11)C]-RS 2315 displayed a high nonspecific binding and is therefore not suitable for visualization of MAO-A in vivo. [(11)C]-RS 2360 on the other hand has potential for mapping MAO-A since specific binding is demonstrated.
The Journal of Nuclear Medicine | 2017
Filipe Elvas; Jan Boddaert; Christel Vangestel; Koon Pak; Brian Gray; Samir Kumar-Singh; Steven Staelens; Sigrid Stroobants; Leonie wyffels
Molecular imaging of cell death may provide a detailed readout of the cellular response to novel therapies and prognostic information on tumor treatment efficacy, assisting in the design of individualized therapy. We compared the predictive power of cell death imaging using 99mTc-duramycin with the current gold standard 18F-FDG for treatment response evaluation after targeted therapy. Methods: Early therapy response evaluation was assessed by 99mTc-duramycin SPECT and 18F-FDG PET imaging in treatment-sensitive COLO205 and treatment-resistant HT29 human colorectal cancer xenografts 24 h after a single dose of conatumumab or IgG1 control. The specificity of 99mTc-duramycin for apoptosis was assessed using 99mTc-linear duramycin control radiotracer. Radiotracer uptake was validated ex vivo by γ-counting and autoradiography and compared with cleaved caspase-3 (CC3) activation and DNA fragmentation (TdT-mediated dUTP nick-end labeling [TUNEL]). Data were analyzed with the Student t test and Pearson correlation. All statistical tests were 2-sided. Results: COLO205 tumor uptake of 99mTc-duramycin was increased 7-fold from baseline in conatumumab- versus IgG1-treated control mice (P < 0.001), in good correlation with histologic analysis of apoptosis (CC3, r = 0.842, and TUNEL, r = 0.894; P < 0.001). No response was detected in HT29 tumors. No change in 99mTc-linear duramycin uptake could be detected in COLO205 tumors after treatment, indicating specificity of the 99mTc-duramycin tumor signal. 18F-FDG uptake was not significantly increased from baseline in conatumumab- versus IgG1-treated COLO205 and HT29 tumor–bearing mice (P = 0.104 and 0.779, respectively) and did not correlate with immunohistochemical evidence of apoptosis. Conclusion: We have demonstrated that 99mTc-duramycin specifically accumulates in apoptotic tumors in which 18F-FDG was not able to differentiate responding from nonresponding tumors early after treatment. 99mTc-duramycin holds promise as a noninvasive imaging radiotracer for early treatment evaluation in the clinic.