David Toubiana
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Toubiana.
BMC Plant Biology | 2013
Uri Hochberg; Asfaw Degu; David Toubiana; Tanya Gendler; Zoran Nikoloski; Shimon Rachmilevitch; Aaron Fait
BackgroundGrapevine metabolism in response to water deficit was studied in two cultivars, Shiraz and Cabernet Sauvignon, which were shown to have different hydraulic behaviors (Hochberg et al. Physiol. Plant. 147:443–453, 2012).ResultsProgressive water deficit was found to effect changes in leaf water potentials accompanied by metabolic changes. In both cultivars, but more intensively in Shiraz than Cabernet Sauvignon, water deficit caused a shift to higher osmolality and lower C/N ratios, the latter of which was also reflected in marked increases in amino acids, e.g., Pro, Val, Leu, Thr and Trp, reductions of most organic acids, and changes in the phenylpropanoid pathway. PCA analysis showed that changes in primary metabolism were mostly associated with water stress, while diversification of specialized metabolism was mostly linked to the cultivars. In the phloem sap, drought was characterized by higher ABA concentration and major changes in benzoate levels coinciding with lower stomatal conductance and suberinization of vascular bundles. Enhanced suberin biosynthesis in Shiraz was reflected by the higher abundance of sap hydroxybenzoate derivatives. Correlation-based network analysis revealed that compared to Cabernet Sauvignon, Shiraz had considerably larger and highly coordinated stress-related changes, reflected in its increased metabolic network connectivity under stress. Network analysis also highlighted the structural role of major stress related metabolites, e.g., Pro, quercetin and ascorbate, which drastically altered their connectedness in the Shiraz network under water deficit.ConclusionsTaken together, the results showed that Vitis vinifera cultivars possess a common metabolic response to water deficit. Central metabolism, and specifically N metabolism, plays a significant role in stress response in vine. At the cultivar level, Cabernet Sauvignon was characterized by milder metabolic perturbations, likely due to a tighter regulation of stomata upon stress induction. Network analysis was successfully implemented to characterize plant stress molecular response and to identify metabolites with a significant structural and biological role in vine stress response.
PLOS Genetics | 2012
David Toubiana; Yaniv Semel; Takayuki Tohge; Romina Beleggia; Luigi Cattivelli; Leah Rosental; Zoran Nikoloski; Dani Zamir; Alisdair R. Fernie; Aaron Fait
To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping.
Trends in Biotechnology | 2013
David Toubiana; Alisdair R. Fernie; Zoran Nikoloski; Aaron Fait
Incomplete knowledge of biochemical pathways makes the holistic description of plant metabolism a non-trivial undertaking. Sensitive analytical platforms, which are capable of accurately quantifying the levels of the various molecular entities of the cell, can assist in tackling this task. However, the ever-increasing amount of high-throughput data, often from multiple technologies, requires significant computational efforts for integrative analysis. Here we introduce the application of network analysis to study plant metabolism and describe the construction and analysis of correlation-based networks from (time-resolved) metabolomics data. By investigating the interactions between metabolites, network analysis can help to interpret complex datasets through the identification of key network components. The relationship between structural and biological roles of network components can be evaluated and employed to aid metabolic engineering.
Food Chemistry | 2016
Silvia Carlin; Urska Vrhovsek; Pietro Franceschi; Cesare Lotti; Luana Bontempo; Federica Camin; David Toubiana; Fabio Zottele; Giambattista Toller; Aaron Fait; Fulvio Mattivi
We carried out comprehensive mapping of volatile compounds in 70 wines, from 48 wineries and 6 vintages, representative of the two main production areas for Italian sparkling wines, by HS-SPME-GCxGC-TOF-MS and multivariate analysis. The final scope was to describe the metabolomics space of these wines, and to verify whether the grape cultivar signature, the pedoclimatic influence of the production area, and the complex technology were measurable in the final product. The wine chromatograms provided a wealth of information, with 1695 compounds being found. A large number of putative markers influenced by the cultivation area was observed. A subset of 196 biomarkers fully discriminated between the two types of sparkling wines investigated. Among the new compounds, safranal and α-isophorone were observed. We showed how correlation-based network analysis could be used as a tool to detect the differences in compound behaviour based on external/environmental influences.
Frontiers in Plant Science | 2016
David Toubiana; Wentao Xue; Nengyi Zhang; Karl Kremling; Amit Gur; Shai Pilosof; Yves Gibon; Mark Stitt; Edward S. Buckler; Alisdair R. Fernie; Aaron Fait
To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their variance within the population, consistently with their related enzymes. The overall higher CV values for metabolites as compared to the tested enzymes are indicative for their greater phenotypic plasticity. H2 tests revealed galactinol (1) and asparagine (0.91) as the highest scorers among metabolites and nitrate reductase (0.73), NAD-glutamate dehydrogenase (0.52), and phosphoglucomutase (0.51) among enzymes. The overall low H2 scores for metabolites and enzymes are suggestive for a great environmental impact or gene-environment interaction. Correlation-based network generation followed by community detection analysis, partitioned the network into three main communities and one dyad, (i) reflecting the different levels of phenotypic plasticity of the two molecular classes as observed for the CV values and (ii) highlighting the concerted changes between classes of chemically related metabolites. Community 1 is composed mainly of enzymes and specialized metabolites, community 2′ is enriched in N-containing compounds and phosphorylated-intermediates. The third community contains mainly organic acids and sugars. Cross-community linkages are supported by aspartate, by the photorespiration amino acids glycine and serine, by the metabolically related GABA and putrescine, and by citrate. The latter displayed the strongest node-betweenness value (185.25) of all nodes highlighting its fundamental structural role in the connectivity of the network by linking between different communities and to the also strongly connected enzyme aldolase.
BioMed Research International | 2016
Albert Batushansky; David Toubiana; Aaron Fait
In the last decade vast data sets are being generated in biological and medical studies. The challenge lies in their summary, complexity reduction, and interpretation. Correlation-based networks and graph-theory based properties of this type of networks can be successfully used during this process. However, the procedure has its pitfalls and requires specific knowledge that often lays beyond classical biology and includes many computational tools and software. Here we introduce one of a series of methods for correlation-based network generation and analysis using freely available software. The pipeline allows the user to control each step of the network generation and provides flexibility in selection of correlation methods and thresholds. The pipeline was implemented on published metabolomics data of a population of human breast carcinoma cell lines MDA-MB-231 under two conditions: normal and hypoxia. The analysis revealed significant differences between the metabolic networks in response to the tested conditions. The network under hypoxia had 1.7 times more significant correlations between metabolites, compared to normal conditions. Unique metabolic interactions were identified which could lead to the identification of improved markers or aid in elucidating the mechanism of regulation between distantly related metabolites induced by the cancer growth.
Plant Physiology and Biochemistry | 2015
Asfaw Degu; Caterina Morcia; Giorgio Tumino; Uri Hochberg; David Toubiana; Fulvio Mattivi; Anna Schneider; Polina Bosca; Luigi Cattivelli; Valeria Terzi; Aaron Fait
The chemical composition of grape berries is varietal dependent and influenced by the environment and viticulture practices. In Muscat grapes, phenolic compounds play a significant role in the organoleptic property of the wine. In the present study, we investigated the chemical diversity of berries in a Muscat collection. Metabolite profiling was performed on 18 Moscato bianco clones and 43 different red and white grape varieties of Muscat using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-QTOF-MS/MS) coupled with SNP genotyping. Principle component analysis and hierarchical clustering showed a separation of the genotypes into six main groups, three red and three white. Anthocyanins mainly explained the variance between the different groups. Additionally, within the white varieties mainly flavonols and flavanols contributed to the chemical diversity identified. A genotype-specific rootstock effect was identified when separately analyzing the skin of the clones, and it was attributed mainly to resveratrol, quercetin 3-O-galactoside, citrate and malate. The metabolite profile of the varieties investigated reveals the chemical diversity existing among different groups of Muscat genotypes. The distribution pattern of metabolites among the groups dictates the abundance of precursors and intermediate metabolite classes, which contribute to the organoleptic properties of Muscat berries.
PLOS ONE | 2013
Wentao Xue; Albert Batushansky; David Toubiana; Ilan Botnick; Jedrzej Szymanski; Inna Khozin-Goldberg; Zoran Nikoloski; Efraim Lewinsohn; Aaron Fait
The interplay of processes in central and specialized metabolisms during seed development of Nigella sativa L. was studied by using a high-throughput metabolomics technology and network-based analysis. Two major metabolic shifts were identified during seed development: the first was characterized by the accumulation of storage lipids (estimated as total fatty acids) and N-compounds, and the second by the biosynthesis of volatile organic compounds (VOCs) and a 30% average decrease in total fatty acids. Network-based analysis identified coordinated metabolic processes during development and demonstrated the presence of five network communities. Enrichment analysis indicated that different compound classes, such as sugars, amino acids, and fatty acids, are largely separated and over-represented in certain communities. One community displayed several terpenoids and the central metabolites, shikimate derived amino acids, raffinose, xylitol and glycerol–3-phosphate. The latter are related to precursors of the mevalonate-independent pathway for VOC production in the plastid; also plastidial fatty acid 18∶3n-3 abundant in “green” seeds grouped with several major terpenes. The findings highlight the interplay between the components of central metabolism and the VOCs. The developmental regulation of Nigella seed metabolism during seed maturation suggests a substantial re-allocation of carbon from the breakdown of fatty acids and from N-compounds, probably towards the biosynthesis of VOCs.
BMC Plant Biology | 2017
Ryan Ghan; Juli Petereit; Richard L. Tillett; Karen Schlauch; David Toubiana; Aaron Fait; Grant R. Cramer
BackgroundWine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage.ResultsTo better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock.ConclusionsA common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.
BMC Genomics | 2016
Leah Rosental; Adi Perelman; Noa Nevo; David Toubiana; Talya Samani; Albert Batushansky; Noga Sikron; Yehoshua Saranga; Aaron Fait
BackgroundThe metabolite content of a seed and its ability to germinate are determined by genetic makeup and environmental effects during development. The interaction between genetics, environment and seed metabolism and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass spectrometry (GC-MS) metabolic profiling and germination tests.ResultsSeed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids, while positive correlations were found for several organic acids and the N metabolites urea and dopamine. Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity, which were also characterized by defined metabolic changes in the seed.ConclusionsAn integrative analysis of the metabolite and germination data revealed metabolite levels unambiguously associated with germination percentage and rate, mostly conserved in the different tested seed development environments. Such consistent relations suggest the potential for developing a method of germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of primary metabolic processes in germination.