Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Tweedie is active.

Publication


Featured researches published by David Tweedie.


Circulation Research | 2002

Differentiation of Pluripotent Embryonic Stem Cells Into Cardiomyocytes

Kenneth R. Boheler; Jaroslaw Czyz; David Tweedie; Huang-Tian Yang; Sergey V. Anisimov; Anna M. Wobus

Abstract— Embryonic stem (ES) cells have been established as permanent lines of undifferentiated pluripotent cells from early mouse embryos. ES cells provide a unique system for the genetic manipulation and the creation of knockout strains of mice through gene targeting. By cultivation in vitro as 3D aggregates called embryoid bodies, ES cells can differentiate into derivatives of all 3 primary germ layers, including cardiomyocytes. Protocols for the in vitro differentiation of ES cells into cardiomyocytes representing all specialized cell types of the heart, such as atrial-like, ventricular-like, sinus nodal–like, and Purkinje-like cells, have been established. During differentiation, cardiac-specific genes as well as proteins, receptors, and ion channels are expressed in a developmental continuum, which closely recapitulates the developmental pattern of early cardiogenesis. Exploitation of ES cell–derived cardiomyocytes has facilitated the analysis of early cardiac development and has permitted in vitro “gain-of-function” or “loss-of-function” genetic studies. Recently, human ES cell lines have been established that can be used to investigate cardiac development and the function of human heart cells and to determine the basic strategies of regenerative cell therapy. This review summarizes the current state of ES cell–derived cardiogenesis and provides an overview of how genomic strategies coupled with this in vitro differentiation system can be applied to cardiac research.


Proceedings of the National Academy of Sciences of the United States of America | 2009

GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism

Yazhou Li; TracyAnn Perry; Mark S. Kindy; Brandon K. Harvey; David Tweedie; Harold W. Holloway; Kathleen Powers; Hui Shen; Josephine M. Egan; Kumar Sambamurti; Arnold Brossi; Debomoy K. Lahiri; Mark P. Mattson; Barry J. Hoffer; Yun Wang

Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic peptide secreted from the gastrointestinal tract in response to food intake. It enhances pancreatic islet β-cell proliferation and glucose-dependent insulin secretion, and lowers blood glucose and food intake in patients with type 2 diabetes mellitus (T2DM). A long-acting GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex-4), is the first of this new class of antihyperglycemia drugs approved to treat T2DM. GLP-1Rs are coupled to the cAMP second messenger pathway and, along with pancreatic cells, are expressed within the nervous system of rodents and humans, where receptor activation elicits neurotrophic actions. We detected GLP-1R mRNA expression in both cultured embryonic primary cerebral cortical and ventral mesencephalic (dopaminergic) neurons. These cells are vulnerable to hypoxia- and 6-hydroxydopamine–induced cell death, respectively. We found that GLP-1 and Ex-4 conferred protection in these cells, but not in cells from Glp1r knockout (-/-) mice. Administration of Ex-4 reduced brain damage and improved functional outcome in a transient middle cerebral artery occlusion stroke model. Ex-4 treatment also protected dopaminergic neurons against degeneration, preserved dopamine levels, and improved motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinsons disease (PD). Our findings demonstrate that Ex-4 can protect neurons against metabolic and oxidative insults, and they provide preclinical support for the therapeutic potential for Ex-4 in the treatment of stroke and PD.


Journal of Alzheimer's Disease | 2010

GLP-1 Receptor Stimulation Reduces Amyloid-β Peptide Accumulation and Cytotoxicity in Cellular and Animal Models of Alzheimer’s Disease

Yazhou Li; Kara B. Duffy; Mary Ann Ottinger; Balmiki Ray; Jason A. Bailey; Harold W. Holloway; David Tweedie; TracyAnn Perry; Mark P. Mattson; Dimitrios Kapogiannis; Kumar Sambamurti; Debomoy K. Lahiri

Type 2 (T2) diabetes mellitus (DM) has been associated with an increased incidence of neurodegenerative disorders, including Alzheimers disease (AD). Several pathological features are shared between diabetes and AD, including dysfunctional insulin signaling and a dysregulation of glucose metabolism. It has therefore been suggested that not only may the two conditions share specific molecular mechanisms but also that agents with proven efficacy in one may be useful against the other. Hence, the present study characterized the effects of a clinically approved long-acting analogue, exendin-4 (Ex-4), of the endogenous insulin releasing incretin, glucagon-like peptide-1 (GLP-1), on stress-induced toxicity in neuronal cultures and on amyloid-beta protein (Abeta) and tau levels in triple transgenic AD (3xTg-AD) mice with and without streptozocin (STZ)-induced diabetes. Ex-4 ameliorated the toxicity of Abeta and oxidative challenge in primary neuronal cultures and human SH-SY5Y cells in a concentration-dependent manner. When 11 to 12.5 month old female 3xTg AD mice were challenged with STZ or saline, and thereafter treated with a continuous subcutaneous infusion of Ex-4 or vehicle, Ex-4 ameliorated the diabetic effects of STZ in 3xTg-AD mice, elevating plasma insulin and lowering both plasma glucose and hemoglobin A1c (HbA1c) levels. Furthermore, brain levels of Abeta protein precursor and Abeta, which were elevated in STZ 3xTg-AD mice, were significantly reduced in Ex-4 treated mice. Brain tau levels were unaffected following STZ challenge, but showed a trend toward elevation that was absent following Ex-4 treatment. Together, these results suggest a potential value of Ex-4 in AD, particularly when associated with T2DM or glucose intolerance.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development

Huang-Tian Yang; David Tweedie; Su Wang; Antonio Guia; Tatiana M. Vinogradova; Konstantin Y. Bogdanov; Paul D. Allen; Michael D. Stern; Edward G. Lakatta; Kenneth R. Boheler

In adult myocardium, the heartbeat originates from the sequential activation of ionic currents in pacemaker cells of the sinoatrial node. Ca2+ release via the ryanodine receptor (RyR) modulates the rate at which these cells beat. In contrast, the mechanisms that regulate heart rate during early cardiac development are poorly understood. Embryonic stem (ES) cells can differentiate into spontaneously contracting myocytes whose beating rate increases with differentiation time. These cells thus offer an opportunity to determine the mechanisms that regulate heart rate during development. Here we show that the increase in heart rate with differentiation is markedly depressed in ES cell-derived cardiomyocytes with a functional knockout (KO) of the cardiac ryanodine receptor (RyR2). KO myocytes show a slowing of the rate of spontaneous diastolic depolarization and an absence of calcium sparks. The depressed rate of pacemaker potential can be mimicked in wild-type myocytes by ryanodine, and rescued in KO myocytes with herpes simplex virus (HSV)-1 amplicons containing full-length RyR2. We conclude that a functional RyR2 is crucial to the progressive increase in heart rate during differentiation of ES cell-derived cardiomyocytes, consistent with a mechanism that couples Ca2+ release via RyR before an action potential with activation of an inward current that accelerates membrane depolarization.


Cns & Neurological Disorders-drug Targets | 2011

Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases

Kathryn A. Frankola; Weiming Luo; David Tweedie

Inflammatory signals generated within the brain and peripheral nervous system direct diverse biological processes. Key amongst the inflammatory molecules is tumor necrosis factor-alpha (TNF-α), a potent pro-inflammatory cytokine that, via binding to its associated receptors, is considered to be a master regulator of cellular cascades that control a number of diverse processes coupled to cell viability, gene expression, synaptic integrity and ion homeostasis. Whereas a self-limiting neuroinflammatory response generally results in the resolution of an intrinsically or extrinsically triggered insult by the elimination of toxic material or injured tissue to restore brain homeostasis and function, in the event of an unregulated reaction, where the immune response persists, inappropriate chronic neuroinflammation can ensue. Uncontrolled neuroinflammatory activity can induce cellular dysfunction and demise, and lead to a selfpropagating cascade of harmful pathogenic events. Such chronic neuroinflammation is a typical feature across a range of debilitating common neurodegenerative diseases, epitomized by Alzheimers disease, Parkinsons disease and amyotrophic lateral sclerosis, in which TNF-α expression appears to be upregulated and may represent a valuable target for intervention. Elaboration of the protective homeostasis signaling cascades from the harmful pathogenic ones that likely drive disease onset and progression could aid in the clinical translation of approaches to lower brain and peripheral nervous system TNF-α levels, and amelioration of inappropriate neuroinflammation.


Journal of Neuroinflammation | 2012

Tumor necrosis factor-α synthesis inhibitor 3,6′-dithiothalidomide attenuates markers of inflammation, Alzheimer pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer’s disease

David Tweedie; Ryan Ferguson; Kelly Fishman; Kathryn A. Frankola; Henriette van Praag; Harold W. Holloway; Weiming Luo; Yazhou Li; Luca Caracciolo; Isabella Russo; Sergio Barlati; Balmiki Ray; Debomoy K. Lahiri; Francesca Bosetti; Susanna Rosi

BackgroundNeuroinflammation is associated with virtually all major neurodegenerative disorders, including Alzheimer’s disease (AD). Although it remains unclear whether neuroinflammation is the driving force behind these disorders, compelling evidence implicates its role in exacerbating disease progression, with a key player being the potent proinflammatory cytokine TNF-α. Elevated TNF-α levels are commonly detected in the clinic and animal models of AD.MethodsThe potential benefits of a novel TNF-α-lowering agent, 3,6′-dithiothalidomide, were investigated in cellular and rodent models of neuroinflammation with a specific focus on AD. These included central and systemic inflammation induced by lipopolysaccharide (LPS) and Aβ1–42 challenge, and biochemical and behavioral assessment of 3xTg-AD mice following chronic 3,6′-dithiothaliodmide.Results3,6′-Dithiothaliodmide lowered TNF-α, nitrite (an indicator of oxidative damage) and secreted amyloid precursor protein (sAPP) levels in LPS-activated macrophage-like cells (RAW 264.7 cells). This translated into reduced central and systemic TNF-α production in acute LPS-challenged rats, and to a reduction of neuroinflammatory markers and restoration of neuronal plasticity following chronic central challenge of LPS. In mice centrally challenged with Aβ1–42 peptide, prior systemic 3,6′-dithiothalidomide suppressed Aβ-induced memory dysfunction, microglial activation and neuronal degeneration. Chronic 3,6′-dithiothalidomide administration to an elderly symptomatic cohort of 3xTg-AD mice reduced multiple hallmark features of AD, including phosphorylated tau protein, APP, Aβ peptide and Aβ-plaque number along with deficits in memory function to levels present in younger adult cognitively unimpaired 3xTg-AD mice. Levels of the synaptic proteins, SNAP25 and synaptophysin, were found to be elevated in older symptomatic drug-treated 3xTg-AD mice compared to vehicle-treated ones, indicative of a preservation of synaptic function during drug treatment.ConclusionsOur data suggest a strong beneficial effect of 3,6′-dithiothalidomide in the setting of neuroinflammation and AD, supporting a role for neuroinflammation and TNF-α in disease progression and their targeting as a means of clinical management.


British Journal of Pharmacology | 2012

Neuroprotective and neurotrophic actions of glucagon‐like peptide‐1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders

Isidro Salcedo; David Tweedie; Yazhou Li

Like type‐2 diabetes mellitus (T2DM), neurodegenerative disorders and stroke are an ever increasing, health, social and economic burden for developed Westernized countries. Age is an important risk factor in all of these; due to the rapidly increasing rise in the elderly population T2DM and neurodegenerative disorders, both represent a looming threat to healthcare systems. Whereas several efficacious drugs are currently available to ameliorate T2DM, effective treatments to counteract pathogenic processes of neurodegenerative disorders are lacking and represent a major scientific and pharmaceutical challenge. Epidemiological data indicate an association between T2DM and most major neurodegenerative disorders, including Alzheimers and Parkinsons diseases. Likewise, there is an association between T2DM and stroke incidence. Studies have revealed that common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline, occur across these. Based on the presence of shared mechanisms and signalling pathways in these seemingly distinct diseases, one could hypothesize that an effective treatment for one disorder could prove beneficial in the others. Glucagon‐like peptide‐1 (GLP‐1)‐based anti‐diabetic drugs have drawn particular attention as an effective new strategy to not only regulate blood glucose but also to reduce apoptotic cell death of pancreatic beta cells in T2DM. Evidence supports a neurotrophic and neuroprotective role of GLP‐1 receptor (R) stimulation in an increasing array of cellular and animal neurodegeneration models as well as in neurogenesis. Herein, we review the physiological role of GLP‐1 in the nervous system, focused towards the potential benefit of GLP‐1R stimulation as an immediately translatable treatment strategy for acute and chronic neurological disorders.


Journal of Neurochemistry | 2010

Enhancing the GLP‐1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells

Yazhou Li; David Tweedie; Mark P. Mattson; Harold W. Holloway

J. Neurochem. (2010) 113, 1621–1631.


Journal of Neuroscience Research | 2007

Apoptotic and behavioral sequelae of mild brain trauma in mice

David Tweedie; Anat Milman; Harold W. Holloway; Yazhou Li; Brandon K. Harvey; Hui Shen; Paul J. Pistell; Debomoy K. Lahiri; Barry J. Hoffer; Yun Wang; Chaim G. Pick

Mild traumatic brain injury (mTBI) is a not uncommon event in adolescents and young adults. Although it does not result in clear morphological brain defects, it is associated with long‐term cognitive, emotional, and behavioral problems. Herein, we characterized the biochemical and behavioral changes associated with experimental mTBI in mice that may act as either targets or surrogate markers for interventional therapy. Specifically, mTBI was induced by 30‐g and 50‐g weight drop, and at 8 and 72 hr thereafter markers of cellular apoptosis—caspase‐3, Bax, apoptosis‐inducing factor (AIF), and cytochrome‐c (Cyt‐c)—were quantified by Western blot analysis in hippocampus ipsilateral to the impact. Levels of amyloid‐β precursor protein (APP) were also measured, and specific behavioral tests—passive avoidance, open field, and forced swimming (Porsolt) paradigms—were undertaken to assess learning, emotionality, and emotional memory. In the absence of hemorrhage or infarcts, as assessed by triphenyltetrazolium chloride staining, procaspase‐3 and Bax levels were markedly altered following mTBI at both times. No cleaved caspase‐3 was detected, and levels of AIF and Cyt‐c, but not APP, were significantly changed at 72 hr. Mice subjected to mTBI were indistinguishable from controls by neurological examination at 1 and 24 hr, and by passive avoidance/open field at 72 hr, but could be differentiated in the forced swimming paradigm. In general, this model mimics the diffuse effects of mTBI on brain function associated with the human condition and highlights specific apoptotic proteins and a behavioral paradigm as potential markers for prospective interventional strategies.


Journal of Neurochemistry | 2011

Tumor necrosis factor-α synthesis inhibitor, 3’6,dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice

Renana Baratz; David Tweedie; Vardit Rubovitch; Weiming Luo; Jeong Seon Yoon; Barry J. Hoffer; Chaim G. Pick

J. Neurochem. (2011) 118, 1032–1042.

Collaboration


Dive into the David Tweedie's collaboration.

Top Co-Authors

Avatar

Yazhou Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Harold W. Holloway

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiming Luo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barry J. Hoffer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnold Brossi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kumar Sambamurti

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge