Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harold W. Holloway is active.

Publication


Featured researches published by Harold W. Holloway.


Proceedings of the National Academy of Sciences of the United States of America | 2009

GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism

Yazhou Li; TracyAnn Perry; Mark S. Kindy; Brandon K. Harvey; David Tweedie; Harold W. Holloway; Kathleen Powers; Hui Shen; Josephine M. Egan; Kumar Sambamurti; Arnold Brossi; Debomoy K. Lahiri; Mark P. Mattson; Barry J. Hoffer; Yun Wang

Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic peptide secreted from the gastrointestinal tract in response to food intake. It enhances pancreatic islet β-cell proliferation and glucose-dependent insulin secretion, and lowers blood glucose and food intake in patients with type 2 diabetes mellitus (T2DM). A long-acting GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex-4), is the first of this new class of antihyperglycemia drugs approved to treat T2DM. GLP-1Rs are coupled to the cAMP second messenger pathway and, along with pancreatic cells, are expressed within the nervous system of rodents and humans, where receptor activation elicits neurotrophic actions. We detected GLP-1R mRNA expression in both cultured embryonic primary cerebral cortical and ventral mesencephalic (dopaminergic) neurons. These cells are vulnerable to hypoxia- and 6-hydroxydopamine–induced cell death, respectively. We found that GLP-1 and Ex-4 conferred protection in these cells, but not in cells from Glp1r knockout (-/-) mice. Administration of Ex-4 reduced brain damage and improved functional outcome in a transient middle cerebral artery occlusion stroke model. Ex-4 treatment also protected dopaminergic neurons against degeneration, preserved dopamine levels, and improved motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinsons disease (PD). Our findings demonstrate that Ex-4 can protect neurons against metabolic and oxidative insults, and they provide preclinical support for the therapeutic potential for Ex-4 in the treatment of stroke and PD.


Current Medical Research and Opinion | 2001

A New Therapeutic Target in Alzheimer's Disease Treatment: Attention to Butyrylcholinesterase

Tada Utsuki; Qian-sheng Yu; Xiaoxiang Zhu; Harold W. Holloway; TracyAnn Perry; Bong Lee; Donald K. Ingram; Debomoy K. Lahiri

Summary Alzheimers disease (AD) is a progressive neurodegenerative disorder of the elderly, characterised by widespread loss central cholinergic function. The only symptomatic treatment proven effective, to date is the use of cholinesterase (ChE) inhibitors to augment surviving cholinergic activity. ChE inhibitors act on the enzymes that hydrolyse acetylcholine (ACh) following synaptic release. In the healthy brain, acetylcholinesterase (AChE) predominates (80%) and butyrylcholinesterase (BuChE) is considered to play a minor role in regulating brain ACh levels. In the AD brain, BuChE activity rises while AChE activity remains unchanged or declines. Therefore both enzymes are likely to have involvement in regulating ACh levels and represent legitimate therapeutic targets to ameliorate the cholinergic deficit. The two enzymes differ in location, substrate specificity and kinetics. Recent evidence suggests that BuChE may also have a role in the aetiology and progression of AD beyond regulation of synaptic ACh levels. Experimental evidence from the use of agents with enhanced selectivity for BuChE (cymserine, MF-8622) and ChE inhibitors such as rivastigmine, which have a dual inhibitory action on both AChE and BuChE, indicate potential therapeutic benefits of inhibiting both AChE and BuChE in AD and related dementias. The development of specific BuChE inhibitors and the continued use of ChE inhibitors with the ability to inhibit BuChE in addition to AChE should lead to improved clinical outcomes.


Diabetologia | 1999

Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations.

Harold W. Holloway; K. A. De Ore; D. Jani; Y. Wang; J. Zhou; M. J. Garant; J. M. Egan

Summary Glucagon-like peptide-1 is the main hormonal mediator of the enteroinsular axis. Recently, it has additionally received considerable attention as a possible new treatment for Type II (non-insulin-dependent) diabetes mellitus. Its major disadvantage is that its duration of action is too short to achieve good 24-h metabolic control. Exendin-4, which is produced in the salivary glands of Gila monster lizards, is structurally similar to glucagon-like peptide-1 and shares several useful biological properties with glucagon-like peptide-1. It binds the glucagon-like peptide-1 receptor, stimulates insulin release and increases the cAMP production in beta cells. We report that exendin-4 is a more potent insulinotropic agent when given intravenously to rats than is glucagon-like peptide-1 (ED50 0.19 nmol/kg for glucagon-like peptide-1 vs 0.0143 nmol/kg for exendin-4) and causes a greater elevation in cAMP concentrations in isolated islets. Of even greater interest we found that when given intraperitoneally only once daily to diabetic mice it had a prolonged effect of lowering blood glucose. After 1 week of treatment blood glucoses were 5.0 ± 2.6 mmol/l compared to diabetic concentrations of 13.2 ± 2.8 mmol/l. After 13 weeks of daily treatment HbA1 c was 8.8 ± 0.4 % in non-treated diabetic animals compared with 4.7 ± 0.25 % in treated diabetic animals. Blood glucoses also were lower (p < 0.005) and insulin concentrations higher (p < 0.02) in the treated animals. Exendin-4 could therefore be preferable to glucagon-like peptide-1 as a long-term treatment of Type II diabetes. [Diabetologia (1999) 42: 45–50]


Journal of Clinical Investigation | 1997

Glucagon-like peptide-1 can reverse the age-related decline in glucose tolerance in rats.

Yihong Wang; Riccardo Perfetti; Harold W. Holloway; Kimberly A. DeOre; Chahrzad Montrose-Rafizadeh; Dariush Elahi; Josephine M. Egan

Wistar rats develop glucose intolerance and have a diminished insulin response to glucose with age. The aim of this study was to investigate if these changes were reversible with glucagon-like peptide-1 (GLP-1), a peptide that we have previously shown could increase insulin mRNA and total insulin content in insulinoma cells. We infused 1.5 pmol/ kg-1.min-1 GLP-1 subcutaneously using ALZET microosmotic pumps into 22-mo-old Wistar rats for 48 h. Rat infused with either GLP-1 or saline were then subjected to an intraperitoneal glucose (1 g/kg body weight) tolerance test, 2 h after removing the pump. 15 min after the intraperitoneal glucose, GLP-1-treated animals had lower plasma glucose levels (9.04+/-0.92 mmol/liter, P < 0.01) than saline-treated animals (11.61+/-0.23 mmol/liter). At 30 min the plasma glucose was still lower in the GLP-1-treated animals (8.61+/-0.39 mmol/liter, P < 0.05) than saline-treated animals (10.36+/-0.43 mmol/liter). This decrease in glucose levels was reflected in the higher insulin levels attained in the GLP-1-treated animals (936+/-163 pmol/liter vs. 395+/-51 pmol/liter, GLP-1 vs. saline, respectively, P < 0.01), detected 15 min after glucose injection. GLP-1 treatment also increased pancreatic insulin, GLUT2, and glucokinase mRNA in the old rats. The effects of GLP-1 were abolished by simultaneous infusion of exendin [9-39], a specific antagonist of GLP-1. GLP-1 is therefore able to reverse some of the known defects that arise in the beta cell of the pancreas of Wistar rats, not only by increasing insulin secretion but also by inducing significant changes at the molecular level.


Journal of Alzheimer's Disease | 2010

GLP-1 Receptor Stimulation Reduces Amyloid-β Peptide Accumulation and Cytotoxicity in Cellular and Animal Models of Alzheimer’s Disease

Yazhou Li; Kara B. Duffy; Mary Ann Ottinger; Balmiki Ray; Jason A. Bailey; Harold W. Holloway; David Tweedie; TracyAnn Perry; Mark P. Mattson; Dimitrios Kapogiannis; Kumar Sambamurti; Debomoy K. Lahiri

Type 2 (T2) diabetes mellitus (DM) has been associated with an increased incidence of neurodegenerative disorders, including Alzheimers disease (AD). Several pathological features are shared between diabetes and AD, including dysfunctional insulin signaling and a dysregulation of glucose metabolism. It has therefore been suggested that not only may the two conditions share specific molecular mechanisms but also that agents with proven efficacy in one may be useful against the other. Hence, the present study characterized the effects of a clinically approved long-acting analogue, exendin-4 (Ex-4), of the endogenous insulin releasing incretin, glucagon-like peptide-1 (GLP-1), on stress-induced toxicity in neuronal cultures and on amyloid-beta protein (Abeta) and tau levels in triple transgenic AD (3xTg-AD) mice with and without streptozocin (STZ)-induced diabetes. Ex-4 ameliorated the toxicity of Abeta and oxidative challenge in primary neuronal cultures and human SH-SY5Y cells in a concentration-dependent manner. When 11 to 12.5 month old female 3xTg AD mice were challenged with STZ or saline, and thereafter treated with a continuous subcutaneous infusion of Ex-4 or vehicle, Ex-4 ameliorated the diabetic effects of STZ in 3xTg-AD mice, elevating plasma insulin and lowering both plasma glucose and hemoglobin A1c (HbA1c) levels. Furthermore, brain levels of Abeta protein precursor and Abeta, which were elevated in STZ 3xTg-AD mice, were significantly reduced in Ex-4 treated mice. Brain tau levels were unaffected following STZ challenge, but showed a trend toward elevation that was absent following Ex-4 treatment. Together, these results suggest a potential value of Ex-4 in AD, particularly when associated with T2DM or glucose intolerance.


Experimental Neurology | 2007

Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy.

TracyAnn Perry; Harold W. Holloway; Ananda Weerasuriya; Peter R. Mouton; Kara B. Duffy; Julie A. Mattison

Pyridoxine (vitamin B6) intoxicated rodents develop a peripheral neuropathy characterized by sensory nerve conduction deficits associated with disturbances of nerve fiber geometry and axonal atrophy. To investigate the possibility that glucagon-like peptide-1 (7-36)-amide (GLP-1) receptor agonism may influence axonal structure and function through neuroprotection neurotrophic support, effects of GLP-1 and its long acting analog, Exendin-4 (Ex4) treatment on pyridoxine-induced peripheral neuropathy were examined in rats using behavioral and morphometric techniques. GLP-1 is an endogenous insulinotropic peptide secreted from the gut in response to the presence of food. GLP-1 receptors (GLP-1R) are coupled to the cAMP second messenger pathway, and are expressed widely throughout neural tissues of humans and rodents. Recent studies have established that GLP-1 and Ex4, have multiple synergistic effects on glucose-dependent insulin secretion pathways of pancreatic beta-cells and on neural plasticity. Data reported here suggest that clinically relevant doses of GLP-1 and Ex4 may offer some protection against the sensory peripheral neuropathy induced by pyridoxine. Our findings suggest a potential role for these peptides in the treatment of neuropathies, including that associated with type II diabetes mellitus.


Journal of Neuroinflammation | 2012

Tumor necrosis factor-α synthesis inhibitor 3,6′-dithiothalidomide attenuates markers of inflammation, Alzheimer pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer’s disease

David Tweedie; Ryan Ferguson; Kelly Fishman; Kathryn A. Frankola; Henriette van Praag; Harold W. Holloway; Weiming Luo; Yazhou Li; Luca Caracciolo; Isabella Russo; Sergio Barlati; Balmiki Ray; Debomoy K. Lahiri; Francesca Bosetti; Susanna Rosi

BackgroundNeuroinflammation is associated with virtually all major neurodegenerative disorders, including Alzheimer’s disease (AD). Although it remains unclear whether neuroinflammation is the driving force behind these disorders, compelling evidence implicates its role in exacerbating disease progression, with a key player being the potent proinflammatory cytokine TNF-α. Elevated TNF-α levels are commonly detected in the clinic and animal models of AD.MethodsThe potential benefits of a novel TNF-α-lowering agent, 3,6′-dithiothalidomide, were investigated in cellular and rodent models of neuroinflammation with a specific focus on AD. These included central and systemic inflammation induced by lipopolysaccharide (LPS) and Aβ1–42 challenge, and biochemical and behavioral assessment of 3xTg-AD mice following chronic 3,6′-dithiothaliodmide.Results3,6′-Dithiothaliodmide lowered TNF-α, nitrite (an indicator of oxidative damage) and secreted amyloid precursor protein (sAPP) levels in LPS-activated macrophage-like cells (RAW 264.7 cells). This translated into reduced central and systemic TNF-α production in acute LPS-challenged rats, and to a reduction of neuroinflammatory markers and restoration of neuronal plasticity following chronic central challenge of LPS. In mice centrally challenged with Aβ1–42 peptide, prior systemic 3,6′-dithiothalidomide suppressed Aβ-induced memory dysfunction, microglial activation and neuronal degeneration. Chronic 3,6′-dithiothalidomide administration to an elderly symptomatic cohort of 3xTg-AD mice reduced multiple hallmark features of AD, including phosphorylated tau protein, APP, Aβ peptide and Aβ-plaque number along with deficits in memory function to levels present in younger adult cognitively unimpaired 3xTg-AD mice. Levels of the synaptic proteins, SNAP25 and synaptophysin, were found to be elevated in older symptomatic drug-treated 3xTg-AD mice compared to vehicle-treated ones, indicative of a preservation of synaptic function during drug treatment.ConclusionsOur data suggest a strong beneficial effect of 3,6′-dithiothalidomide in the setting of neuroinflammation and AD, supporting a role for neuroinflammation and TNF-α in disease progression and their targeting as a means of clinical management.


Journal of Pharmacology and Experimental Therapeutics | 2006

The Experimental Alzheimer's Disease Drug Posiphen [(+)-Phenserine] Lowers Amyloid-β Peptide Levels in Cell Culture and Mice

Debomoy K. Lahiri; Demao Chen; Bryan Maloney; Harold W. Holloway; Qian Sheng Yu; Tada Utsuki; Tony Giordano; Kumar Sambamurti

Major characteristics of Alzheimers disease (AD) are synaptic loss, cholinergic dysfunction, and abnormal protein depositions in the brain. The amyloid β-peptide (Aβ), a proteolytic fragment of amyloid β precursor protein (APP), aggregates to form neuritic plaques and has a causative role in AD. A present focus of AD research is to develop safe Aβ-lowering drugs. A selective acetylcholinesterase inhibitor, phenserine, in current human trials lowers both APP and Aβ. Phenserine is dose-limited in animals by its cholinergic actions; its cholinergically inactive enantiomer, posiphen (+)-[phenserine], was assessed. In cultured human neuroblastoma cells, posiphen, like phenserine, dose- and time-dependently lowered APP and Aβ levels by reducing the APP synthesis rate. This action translated to an in vivo system. Posiphen administration to mice (7.5–75 mg/kg daily, 21 consecutive days) significantly decreased levels of total APP (tissue mass-adjusted) in a dose-dependent manner. Aβ40 and Aβ42 levels were significantly lowered by posiphen (≥15 mg/kg) compared with controls. The activities of α-, β-, and γ-secretases were assessed in the same brain samples, and β-secretase activity was significantly reduced. Posiphen, like phenserine, can lower Aβ via multiple mechanisms and represents an interesting drug candidate for AD treatment.


Journal of Neurochemistry | 2010

Enhancing the GLP‐1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells

Yazhou Li; David Tweedie; Mark P. Mattson; Harold W. Holloway

J. Neurochem. (2010) 113, 1621–1631.


Journal of Neuroscience Research | 2007

Apoptotic and behavioral sequelae of mild brain trauma in mice

David Tweedie; Anat Milman; Harold W. Holloway; Yazhou Li; Brandon K. Harvey; Hui Shen; Paul J. Pistell; Debomoy K. Lahiri; Barry J. Hoffer; Yun Wang; Chaim G. Pick

Mild traumatic brain injury (mTBI) is a not uncommon event in adolescents and young adults. Although it does not result in clear morphological brain defects, it is associated with long‐term cognitive, emotional, and behavioral problems. Herein, we characterized the biochemical and behavioral changes associated with experimental mTBI in mice that may act as either targets or surrogate markers for interventional therapy. Specifically, mTBI was induced by 30‐g and 50‐g weight drop, and at 8 and 72 hr thereafter markers of cellular apoptosis—caspase‐3, Bax, apoptosis‐inducing factor (AIF), and cytochrome‐c (Cyt‐c)—were quantified by Western blot analysis in hippocampus ipsilateral to the impact. Levels of amyloid‐β precursor protein (APP) were also measured, and specific behavioral tests—passive avoidance, open field, and forced swimming (Porsolt) paradigms—were undertaken to assess learning, emotionality, and emotional memory. In the absence of hemorrhage or infarcts, as assessed by triphenyltetrazolium chloride staining, procaspase‐3 and Bax levels were markedly altered following mTBI at both times. No cleaved caspase‐3 was detected, and levels of AIF and Cyt‐c, but not APP, were significantly changed at 72 hr. Mice subjected to mTBI were indistinguishable from controls by neurological examination at 1 and 24 hr, and by passive avoidance/open field at 72 hr, but could be differentiated in the forced swimming paradigm. In general, this model mimics the diffuse effects of mTBI on brain function associated with the human condition and highlights specific apoptotic proteins and a behavioral paradigm as potential markers for prospective interventional strategies.

Collaboration


Dive into the Harold W. Holloway's collaboration.

Top Co-Authors

Avatar

Arnold Brossi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qian-sheng Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Tweedie

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Timothy T. Soncrant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Donald K. Ingram

Johns Hopkins Bayview Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stanley I. Rapoport

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

Yazhou Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qian Sheng Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Weiming Luo

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge