Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Tyssen is active.

Publication


Featured researches published by David Tyssen.


PLOS Medicine | 2007

N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance

Soo Huey Yap; Chih-Wei Sheen; Jonathan Phillip Fahey; Mark Zanin; David Tyssen; Viviane D. Lima; Brian Wynhoven; Michael Kuiper; Nicolas Sluis-Cremer; Richard Harrigan; Gilda Tachedjian

Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centres database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centres database. N348I increased in prevalence from below 1% in 368 treatment-naïve individuals to 12.1% in 1,009 treatment-experienced patients (p = 7.7 × 10−12). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p < 0.001), the lamivudine resistance mutations M184V/I (p < 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p < 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p < 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wild-type HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4-fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions This study provides the first in vivo evidence that treatment with RT inhibitors can select a mutation (i.e., N348I) outside the polymerase domain of the HIV-1 RT that confers dual-class resistance. Its emergence, which can happen early during therapy, may significantly impact on a patients response to antiretroviral therapies containing zidovudine and nevirapine. This study also provides compelling evidence for investigating the role of other mutations in the connection and RNase H domains in virological failure.


PLOS ONE | 2010

Structure activity relationship of dendrimer microbicides with dual action antiviral activity.

David Tyssen; Scott Andrew Henderson; Adam Johnson; Jasminka Sterjovski; Katie L. Moore; Jennifer La; Mark Zanin; Secondo Sonza; Peter Karellas; Michael Giannis; Guy Y. Krippner; Steven L. Wesselingh; Tom McCarthy; Paul R. Gorry; Paul A. Ramsland; Richard A. Cone; Jeremy R. A. Paull; Gareth Lewis; Gilda Tachedjian

Background Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published. Methods and Findings Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina. Conclusions Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as VivaGel® and is currently in clinical development to provide protection against HIV and HSV. SPL7013 could also be combined with other microbicides.


PLOS ONE | 2011

SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans.

Clare Frances Price; David Tyssen; Secondo Sonza; Ashley Davie; Sonya Evans; Gareth Lewis; Shirley Xia; Tim Spelman; Peter Hodsman; Thomas R. Moench; Andrew J Humberstone; Jeremy R. A. Paull; Gilda Tachedjian

SPL7013 Gel (VivaGel®) is a microbicide in development for prevention of HIV and HSV. This clinical study assessed retention and duration of antiviral activity following vaginal administration of 3% SPL7013 Gel in healthy women. Participants received 5 single doses of product with ≥5 days between doses. A cervicovaginal fluid (CVF) sample was collected using a SoftCup™ pre-dose, and immediately, or 1, 3, 12 or 24 h post-dose. HIV-1 and HSV-2 antiviral activities of CVF samples were determined in cell culture assays. Antiviral activity in the presence of seminal plasma was also tested. Mass and concentration of SPL7013 in CVF samples was determined. Safety was assessed by reporting of adverse events. Statistical analysis was performed using the Wilcoxon signed-rank test with Bonferroni adjustment; p≤0.003 was significant. Eleven participants completed the study. Inhibition of HIV-1 and HSV-2 by pre-dose CVF samples was negligible. CVF samples obtained immediately after dosing almost completely inhibited (median, interquartile range) HIV-1 [96% (95,97)] and HSV-2 [86% (85,94)], and activity was maintained in all women at 3 h (HIV-1 [96% (95,98), p = 0.9]; HSV-2 [94% (91,97), p = 0.005]). At 24 h, >90% of initial HIV-1 and HSV-2 inhibition was maintained in 6/11 women. SPL7013 was recovered in CVF samples obtained at baseline (46% of 105 mg dose). At 3 and 24 h, 22 mg and 4 mg SPL7013, respectively, were recovered. More than 70% inhibition of HIV-1 and HSV-2 was observed if there was >0.5 mg SPL7013 in CVF samples. High levels of antiviral activity were retained in the presence of seminal plasma. VivaGel was well tolerated with no signs or symptoms of vaginal, vulvar or cervical irritation reported. Potent antiviral activity was observed against HIV-1 and HSV-2 immediately following vaginal administration of VivaGel, with activity maintained for at least 3 h post-dose. The data provide evidence of antiviral activity in a clinical setting, and suggest VivaGel could be administered up to 3 h before coitus. Trial Registration The study is registered at ClinicalTrials.gov under identifier: NCT00740584


Journal of Antimicrobial Chemotherapy | 2013

Vaginal concentrations of lactic acid potently inactivate HIV

Muriel Aldunate; David Tyssen; Adam Johnson; Tasnim Saifudin Zakir; Secondo Sonza; Thomas R. Moench; Richard A. Cone; Gilda Tachedjian

Objectives When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). Methods HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. Results l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. Conclusions l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV.


Antiviral Research | 2011

Virucidal Activity of the Dendrimer Microbicide SPL7013 Against HIV-1

Sushama Telwatte; Katie L. Moore; Adam Johnson; David Tyssen; Jasminka Sterjovski; Muriel Aldunate; Paul R. Gorry; Paul A. Ramsland; Gareth Lewis; Jeremy R. A. Paull; Secondo Sonza; Gilda Tachedjian

Topical microbicides for use by women to prevent the transmission of human immunodeficiency virus (HIV) and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. SPL7013 is a dendrimer with broad-spectrum activity against HIV type I (HIV-1) and -2 (HIV-2), herpes simplex viruses type-1 (HSV-1) and -2 (HSV-2) and human papillomavirus. SPL7013 [3% (w/w)] has been formulated in a mucoadhesive carbopol gel (VivaGel®) for use as a topical microbicide. Previous studies showed that SPL7013 has similar potency against CXCR4-(X4) and CCR5-using (R5) strains of HIV-1 and that it blocks viral entry. However, the ability of SPL7013 to directly inactivate HIV-1 is unknown. We examined whether SPL7013 demonstrates virucidal activity against X4 (NL4.3, MBC200, CMU02 clade EA and 92UG046 clade D), R5 (Ba-L, NB25 and 92RW016 clade A) and dual-tropic (R5X4; MACS1-spln) HIV-1 using a modified HLA-DR viral capture method and by polyethylene glycol precipitation. Evaluation of virion integrity was determined by ultracentrifugation through a sucrose cushion and detection of viral proteins by Western blot analysis. SPL7013 demonstrated potent virucidal activity against X4 and R5X4 strains, although virucidal activity was less potent for the 92UG046 X4 clade D isolate. Where potent virucidal activity was observed, the 50% virucidal concentrations were similar to the 50% effective concentrations previously reported in drug susceptibility assays, indicating that the main mode of action of SPL7013 is by direct viral inactivation for these strains. In contrast, SPL7013 lacked potent virucidal activity against R5 HIV-1 strains. Evaluation of the virucidal mechanism showed that SPL7013-treated NL4.3, 92UG046 and MACS1-spln virions were intact with no significant decrease in gp120 surface protein with respect to p24 capsid content compared to the corresponding untreated virus. These studies demonstrate that SPL7013 is virucidal against HIV-1 strains that utilize the CXCR4 coreceptor but not viruses tested in this study that solely use CCR5 by a mechanism that is distinct from virion disruption or loss of gp120. In addition, the mode of action by which SPL7013 prevents infection of cells with X4 and R5X4 strains is likely to differ from R5 strains of HIV-1.


Mucosal Immunology | 2017

Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition

Anna C. Hearps; David Tyssen; D Srbinovski; L Bayigga; D J D Diaz; M Aldunate; Richard A. Cone; Raffi Gugasyan; Deborah J. Anderson; Gilda Tachedjian

Inflammation in the female reproductive tract (FRT) is associated with increased HIV transmission. Lactobacillus spp. dominate the vaginal microbiota of many women and their presence is associated with reduced HIV acquisition. Here we demonstrate that lactic acid (LA), a major organic acid metabolite produced by lactobacilli, mediates anti-inflammatory effects on human cervicovaginal epithelial cells. Treatment of human vaginal and cervical epithelial cell lines with LA (pH 3.9) elicited significant increases in the production of the anti-inflammatory cytokine IL-1RA. When added simultaneously or prior to stimulation, LA inhibited the Toll-like receptor agonist-elicited production of inflammatory mediators IL-6, IL-8, TNFα, RANTES, and MIP3α from epithelial cell lines and prevented IL-6 and IL-8 production by seminal plasma. The anti-inflammatory effect of LA was mediated by the protonated form present at pH≤3.86 and was observed with both L- and D-isomers. A similar anti-inflammatory effect of LA was observed in primary cervicovaginal cells and in an organotypic epithelial tissue model. These findings identify a novel property of LA that acts directly on epithelial cells to inhibit FRT inflammation and highlights the potential use of LA-containing agents in the lower FRT as adjuncts to female-initiated strategies to reduce HIV acquisition.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening.

Jennifer La; Catherine Frances Mary Latham; Ricky Nathan Tinetti; Adam Johnson; David Tyssen; Kelly Huber; Nicolas Sluis-Cremer; Jamie S. Simpson; Stephen J. Headey; David K. Chalmers; Gilda Tachedjian

Significance In this study, we demonstrate a strategy using a combination of NMR-based binding and functional assays to screen a library of low-molecular-weight compounds known as fragments to identify new drug precursors that target HIV-1 reverse transcriptase (RT). Using this approach, we have discovered three fragments that inhibit HIV-1 RT and clinically relevant drug-resistant mutants. Enzyme assays demonstrate that at least two of these inhibitors are mechanistically distinct from HIV-1 RT drugs used clinically. One of these fragments inhibits HIV-1 replication in cell-based assays. The small size, hydrophilic nature, and excellent ligand efficiency of these fragments make them good starting points for the development of new classes of RT drugs for HIV-1 prevention or treatment. Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment.


Antiviral Chemistry & Chemotherapy | 1990

Investigation of Topoisomerase Inhibitors for Activity against Human Immunodeficiency Virus: Inhibition by Coumermycin A1

Gilda Tachedjian; David Tyssen; Stephen Locarnini; Ian D. Gust; Christopher J. Birch

Representative DNA gyrase inhibitors, eukaryotic topoisomerase I and II inhibitors and DNA cleaving or binding compounds were screened for their activity against human immunodeficiency virus (HIV) replication in MT-2 cells, with the HIV supercoiled DNA form as the proposed target. Of 17 compounds, only the DNA gyrase inhibitor coumermycin A1 was active. This inhibition was observed for two HIV isolates in both MT-2 cells and peripheral blood leucocytes, and could not be attributed to cytotoxicity. Coumermycin A1 did not inhibit HIV reverse transcriptase activity in an in vitro assay at concentrations that inhibited HIV replication in infected cells; its precise mechanism of action remains to be elucidated.


Antiviral Research | 2000

Effect of protease inhibitors on HIV-1 maturation and infectivity

D.K Jardine; David Tyssen; Christopher J. Birch

The effects of HIV-1 protease inhibitors on proteolytic processing and infectivity of virions produced from lymphocytes chronically infected with the virus were studied. Protease inhibition was detected by the accumulation of the polyprotein precursors Pr55gag and Pr160gag-pol and their cleavage intermediates. Immunoblot analysis demonstrated that while the processing of Pr55gag was largely irreversible, cleavage of Pr160gag-pol proceeded once the inhibitor was removed, although it was not completed during 96 h of subsequent observation. Virions produced during exposure of cells to protease inhibitors regained some degree of infectivity post-withdrawal of the inhibitor, suggesting that the processing of Pr160gag-pol following drug withdrawal resulted in the production of those enzymes necessary to enable at least limited viral replication. When cells were exposed to a protease inhibitor for 72 h then the inhibitor withdrawn, a lag phase of up to 24 h occurred before these cells produced virions with equivalent infectivity to virus produced from cells not exposed to drug. These observations may reflect a clinical situation likely to occur as trough plasma concentrations of protease inhibitors fall below the IC100 for HIV, highlighting the need for adherence to drug regimens containing these inhibitors.


Antimicrobial Agents and Chemotherapy | 2009

Enhancement of human immunodeficiency virus type 1 replication is not intrinsic to all polyanion-based microbicides.

Secondo Sonza; Adam Johnson; David Tyssen; Tim Spelman; Gareth Lewis; Jeremy R. A. Paull; Gilda Tachedjian

ABSTRACT Polyanion-based microbicides have been developed to prevent the sexual transmission of human immunodeficiency virus (HIV). Recent data suggest that polyanions have the capacity to enhance HIV type 1 (HIV-1) replication at threshold antiviral concentrations. Evaluation of the microbicide candidates SPL7013 and PRO 2000 revealed no specific enhancement of two CCR5 HIV-1 strains in human peripheral blood mononuclear cells compared to enfuvirtide (Fuzeon). The enhancement effect is likely to be a function of the assay conditions and is not an intrinsic property of these polyanions.

Collaboration


Dive into the David Tyssen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge