Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilda Tachedjian is active.

Publication


Featured researches published by Gilda Tachedjian.


PLOS Medicine | 2007

N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance

Soo Huey Yap; Chih-Wei Sheen; Jonathan Phillip Fahey; Mark Zanin; David Tyssen; Viviane D. Lima; Brian Wynhoven; Michael Kuiper; Nicolas Sluis-Cremer; Richard Harrigan; Gilda Tachedjian

Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centres database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centres database. N348I increased in prevalence from below 1% in 368 treatment-naïve individuals to 12.1% in 1,009 treatment-experienced patients (p = 7.7 × 10−12). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p < 0.001), the lamivudine resistance mutations M184V/I (p < 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p < 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p < 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wild-type HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4-fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions This study provides the first in vivo evidence that treatment with RT inhibitors can select a mutation (i.e., N348I) outside the polymerase domain of the HIV-1 RT that confers dual-class resistance. Its emergence, which can happen early during therapy, may significantly impact on a patients response to antiretroviral therapies containing zidovudine and nevirapine. This study also provides compelling evidence for investigating the role of other mutations in the connection and RNase H domains in virological failure.


PLOS ONE | 2010

Structure activity relationship of dendrimer microbicides with dual action antiviral activity.

David Tyssen; Scott Andrew Henderson; Adam Johnson; Jasminka Sterjovski; Katie L. Moore; Jennifer La; Mark Zanin; Secondo Sonza; Peter Karellas; Michael Giannis; Guy Y. Krippner; Steven L. Wesselingh; Tom McCarthy; Paul R. Gorry; Paul A. Ramsland; Richard A. Cone; Jeremy R. A. Paull; Gareth Lewis; Gilda Tachedjian

Background Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published. Methods and Findings Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina. Conclusions Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as VivaGel® and is currently in clinical development to provide protection against HIV and HSV. SPL7013 could also be combined with other microbicides.


Virus Research | 2008

Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors.

Nicolas Sluis-Cremer; Gilda Tachedjian

The non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are a therapeutic class of compounds that are routinely used, in combination with other antiretroviral drugs, to treat HIV-1 infection. NNRTIs primarily block HIV-1 replication by preventing RT from completing reverse transcription of the viral single-stranded RNA genome into DNA. However, some NNRTIs, such as efavirenz, have been shown to inhibit the late stages of HIV-1 replication by interfering with HIV-1 Gag-Pol polyprotein processing, while others, such as the pyrimidinediones, have been shown to inhibit both HIV-1 RT-mediated reverse transcription and HIV-1/HIV-2 viral entry. Accordingly, in this review we describe the multiple mechanisms by which NNRTIs inhibit HIV-1 reverse transcription (and in some cases HIV-2 reverse transcription) and other key steps involved in HIV-1/HIV-2 replication.


PLOS ONE | 2011

SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans.

Clare Frances Price; David Tyssen; Secondo Sonza; Ashley Davie; Sonya Evans; Gareth Lewis; Shirley Xia; Tim Spelman; Peter Hodsman; Thomas R. Moench; Andrew J Humberstone; Jeremy R. A. Paull; Gilda Tachedjian

SPL7013 Gel (VivaGel®) is a microbicide in development for prevention of HIV and HSV. This clinical study assessed retention and duration of antiviral activity following vaginal administration of 3% SPL7013 Gel in healthy women. Participants received 5 single doses of product with ≥5 days between doses. A cervicovaginal fluid (CVF) sample was collected using a SoftCup™ pre-dose, and immediately, or 1, 3, 12 or 24 h post-dose. HIV-1 and HSV-2 antiviral activities of CVF samples were determined in cell culture assays. Antiviral activity in the presence of seminal plasma was also tested. Mass and concentration of SPL7013 in CVF samples was determined. Safety was assessed by reporting of adverse events. Statistical analysis was performed using the Wilcoxon signed-rank test with Bonferroni adjustment; p≤0.003 was significant. Eleven participants completed the study. Inhibition of HIV-1 and HSV-2 by pre-dose CVF samples was negligible. CVF samples obtained immediately after dosing almost completely inhibited (median, interquartile range) HIV-1 [96% (95,97)] and HSV-2 [86% (85,94)], and activity was maintained in all women at 3 h (HIV-1 [96% (95,98), p = 0.9]; HSV-2 [94% (91,97), p = 0.005]). At 24 h, >90% of initial HIV-1 and HSV-2 inhibition was maintained in 6/11 women. SPL7013 was recovered in CVF samples obtained at baseline (46% of 105 mg dose). At 3 and 24 h, 22 mg and 4 mg SPL7013, respectively, were recovered. More than 70% inhibition of HIV-1 and HSV-2 was observed if there was >0.5 mg SPL7013 in CVF samples. High levels of antiviral activity were retained in the presence of seminal plasma. VivaGel was well tolerated with no signs or symptoms of vaginal, vulvar or cervical irritation reported. Potent antiviral activity was observed against HIV-1 and HSV-2 immediately following vaginal administration of VivaGel, with activity maintained for at least 3 h post-dose. The data provide evidence of antiviral activity in a clinical setting, and suggest VivaGel could be administered up to 3 h before coitus. Trial Registration The study is registered at ClinicalTrials.gov under identifier: NCT00740584


Journal of Biological Chemistry | 2011

Decoding the Membrane Activity of the Cyclotide Kalata B1 THE IMPORTANCE OF PHOSPHATIDYLETHANOLAMINE PHOSPHOLIPIDS AND LIPID ORGANIZATION ON HEMOLYTIC AND ANTI-HIV ACTIVITIES

Sónia Troeira Henriques; Yen-Hua Huang; Henri G. Franquelim; Filomena A. Carvalho; Adam Johnson; Secondo Sonza; Gilda Tachedjian; Miguel A. R. B. Castanho; Norelle L. Daly; David J. Craik

Cyclotides, a large family of cyclic peptides from plants, have a broad range of biological activities, including insecticidal, cytotoxic, and anti-HIV activities. In all of these activities, cell membranes seem likely to be the primary target for cyclotides. However, the mechanistic role of lipid membranes in the activity of cyclotides remains unclear. To determine the role of lipid organization in the activity of the prototypic cyclotide, kalata B1 (kB1), and synthetic analogs, their bioactivities and affinities for model membranes were evaluated. We found that the bioactivity of kB1 is dependent on the lipid composition of target cell membranes. In particular, the activity of kB1 requires specific interactions with phospholipids containing phosphatidylethanolamine (PE) headgroups but is further modulated by nonspecific peptide-lipid hydrophobic interactions, which are favored in raft-like membranes. Negatively charged phospholipids do not favor high kB1 affinity. This lipid selectivity explains trends in antimicrobial and hemolytic activities of kB1; it does not target bacterial cell walls, which are negatively charged and lacking PE-phospholipids but can insert in the membranes of red blood cells, which have a low PE content and raft domains in their outer layer. We further show that the anti-HIV activity of kB1 is the result of its ability to target and disrupt the membranes of HIV particles, which are raft-like membranes very rich in PE-phospholipids.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase

Gilda Tachedjian; Marianna Orlova; Stefan G. Sarafianos; Edward Arnold; Stephen P. Goff

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV type 1 (HIV-1) reverse transcriptase (RT). Yeast grown in the presence of many of these drugs exhibited dramatically increased association of the p66 and p51 subunits of the HIV-1 RT as reported by a yeast two-hybrid assay. The enhancement required drug binding by RT; introduction of a drug-resistance mutation into the p66 construct negated the enhancement effect. The drugs could also induce heterodimerization of dimerization defective mutants. Coimmunoprecipitation of RT subunits from yeast lysates confirmed the induction of heterodimer formation by the drugs. In vitro-binding studies indicate that NNRTIs can bind tightly to p66 but not p51 and then mediate subsequent heterodimerization. This study demonstrates an unexpected effect of NNRTIs on the assembly of RT subunits.


Journal of Biological Chemistry | 2012

Phosphatidylethanolamine Binding Is a Conserved Feature of Cyclotide-Membrane Interactions

Sónia Troeira Henriques; Yen-Hua Huang; Miguel A. R. B. Castanho; Luis A. Bagatolli; Secondo Sonza; Gilda Tachedjian; Norelle L. Daly; David J. Craik

Background: Cyclotides are a family of plant-expressed pesticidal cyclic peptides. Results: A broad range of cyclotides specifically interact with membranes containing phosphatidylethanolamine (PE)-phospholipids. Conclusion: Cyclotide bioactivity correlates with an ability to target, insert into, and disrupt lipid membranes containing PE-phospholipids. Significance: Cyclotides constitute a new lipid-binding protein family that has potential as a scaffold to target tumor cells. Cyclotides are bioactive cyclic peptides isolated from plants that are characterized by a topologically complex structure and exceptional resistance to enzymatic or thermal degradation. With their sequence diversity, ultra-stable core structural motif, and range of bioactivities, cyclotides are regarded as a combinatorial peptide template with potential applications in drug design. The mode of action of cyclotides remains elusive, but all reported biological activities are consistent with a mechanism involving membrane interactions. In this study, a diverse set of cyclotides from the two major subfamilies, Möbius and bracelet, and an all-d mirror image form, were examined to determine their mode of action. Their lipid selectivity and membrane affinity were determined, as were their toxicities against a range of targets (red blood cells, bacteria, and HIV particles). Although they had different membrane-binding affinities, all of the tested cyclotides targeted membranes through binding to phospholipids containing phosphatidylethanolamine headgroups. Furthermore, the biological potency of the tested cyclotides broadly correlated with their ability to target and disrupt cell membranes. The finding that a broad range of cyclotides target a specific lipid suggests their categorization as a new lipid-binding protein family. Knowledge of their membrane specificity has the potential to assist in the design of novel drugs based on the cyclotide framework, perhaps allowing the targeting of peptide drugs to specific cell types.


PLOS Pathogens | 2006

Potent Nonnucleoside Reverse Transcriptase Inhibitors Target HIV-1 Gag-Pol

Anna Figueiredo; Katie L. Moore; Johnson Mak; Nicolas Sluis-Cremer; Marie-Pierre de Béthune; Gilda Tachedjian

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) target HIV-1 reverse transcriptase (RT) by binding to a pocket in RT that is close to, but distinct, from the DNA polymerase active site and prevent the synthesis of viral cDNA. NNRTIs, in particular, those that are potent inhibitors of RT polymerase activity, can also act as chemical enhancers of the enzymes inter-subunit interactions. However, the consequences of this chemical enhancement effect on HIV-1 replication are not understood. Here, we show that the potent NNRTIs efavirenz, TMC120, and TMC125, but not nevirapine or delavirdine, inhibit the late stages of HIV-1 replication. These potent NNRTIs enhanced the intracellular processing of Gag and Gag-Pol polyproteins, and this was associated with a decrease in viral particle production from HIV-1-transfected cells. The increased polyprotein processing is consistent with premature activation of the HIV-1 protease by NNRTI-enhanced Gag-Pol multimerization through the embedded RT sequence. These findings support the view that Gag-Pol multimerization is an important step in viral assembly and demonstrate that regulation of Gag-Pol/Gag-Pol interactions is a novel target for small molecule inhibitors of HIV-1 production. Furthermore, these drugs can serve as useful probes to further understand processes involved in HIV-1 particle assembly and maturation.


Journal of Antimicrobial Chemotherapy | 2013

Vaginal concentrations of lactic acid potently inactivate HIV

Muriel Aldunate; David Tyssen; Adam Johnson; Tasnim Saifudin Zakir; Secondo Sonza; Thomas R. Moench; Richard A. Cone; Gilda Tachedjian

Objectives When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). Methods HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. Results l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. Conclusions l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV.


Current HIV Research | 2005

The Packaging and Maturation of the HIV-1 Pol Proteins

Melissa K. Hill; Gilda Tachedjian; Johnson Mak

The Pol protein of human immunodeficiency virus type 1 (HIV-1) harbours the viral enzymes critical for viral replication; protease (PR), reverse transcriptase (RT), and integrase (IN). PR, RT and IN are not functional in their monomeric forms and must come together as either dimers (PR), heterodimers (RT) or tetramers (IN) to be catalytically active. Our knowledge of the tertiary structures of the functional enzymes is well advanced, and substantial progress has recently been made towards understanding the precise steps leading from Pol protein synthesis through viral assembly to the release of active viral enzymes. This review will summarise our current understanding of how the Pol proteins, which are initially expressed as a Gag-Pol fusion product, are packaged into the assembling virion and discuss the maturation process that results in the release of the viral enzymes in their active forms. Our discussion will focus on the relationship between structure and function for each of the viral enzymes. This review will also provide an overview of the current status of inhibitors against the HIV-1 Pol proteins. Effective inhibitors of PR and RT are well established and we will discuss the next generation inhibitors of these enzymes as well recent investigations that have highlighted the potential of IN and RNase H as antiretroviral targets.

Collaboration


Dive into the Gilda Tachedjian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Cui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Tachedjian

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lin-Fa Wang

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge