Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Rusnak is active.

Publication


Featured researches published by David W. Rusnak.


Cancer Research | 2004

A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells.

Edgar R. Wood; Anne T. Truesdale; Octerloney B. McDonald; Derek Yuan; Anne M. Hassell; Scott Howard Dickerson; Byron Ellis; Christopher Pennisi; Earnest Horne; Karen Elizabeth Lackey; Krystal J. Alligood; David W. Rusnak; Tona M. Gilmer; Lisa M. Shewchuk

GW572016 (Lapatinib) is a tyrosine kinase inhibitor in clinical development for cancer that is a potent dual inhibitor of epidermal growth factor receptor (EGFR, ErbB-1) and ErbB-2. We determined the crystal structure of EGFR bound to GW572016. The compound is bound to an inactive-like conformation of EGFR that is very different from the active-like structure bound by the selective EGFR inhibitor OSI-774 (Tarceva) described previously. Surprisingly, we found that GW572016 has a very slow off-rate from the purified intracellular domains of EGFR and ErbB-2 compared with OSI-774 and another EGFR selective inhibitor, ZD-1839 (Iressa). Treatment of tumor cells with these inhibitors results in down-regulation of receptor tyrosine phosphorylation. We evaluated the duration of the drug effect after washing away free compound and found that the rate of recovery of receptor phosphorylation in the tumor cells reflected the inhibitor off-rate from the purified intracellular domain. The slow off-rate of GW572016 correlates with a prolonged down-regulation of receptor tyrosine phosphorylation in tumor cells. The differences in the off-rates of these drugs and the ability of GW572016 to inhibit ErbB-2 can be explained by the enzyme-inhibitor structures.


Cancer Research | 2006

Activity of the Dual Kinase Inhibitor Lapatinib (GW572016) against HER-2-Overexpressing and Trastuzumab-Treated Breast Cancer Cells

Gottfried E. Konecny; Mark D. Pegram; Natarajan Venkatesan; Richard S. Finn; Guorong Yang; Martina Rahmeh; Michael Untch; David W. Rusnak; Glenn M. Spehar; Robert J. Mullin; Barry R. Keith; Tona M. Gilmer; Mark S. Berger; Karl C. Podratz; Dennis J. Slamon

Lapatinib (GW572016) is a selective inhibitor of both epidermal growth factor receptor (EGFR) and HER-2 tyrosine kinases. Here, we explore the therapeutic potential of lapatinib by testing its effect on tumor cell growth in a panel of 31 characterized human breast cancer cell lines, including trastuzumab-conditioned HER-2-positive cell lines. We further characterize its activity in combination with trastuzumab and analyze whether EGFR and HER-2 expression or changes induced in the activation of EGFR, HER-2, Raf, AKT, or extracellular signal-regulated kinase (ERK) are markers of drug activity. We report that concentration-dependent antiproliferative effects of lapatinib were seen in all breast cancer cell lines tested but varied significantly between individual cell lines with up to 1,000-fold difference in the IC(50)s (range, 0.010-18.6 micromol/L). Response to lapatinib was significantly correlated with HER-2 expression and its ability to inhibit HER-2, Raf, AKT, and ERK phosphorylation. Long-term in vivo lapatinib studies were conducted with human breast cancer xenografts in athymic mice. Treatment over 77 days resulted in a sustained and significant reduction in xenograft volume compared with untreated controls. For the combination of lapatinib plus trastuzumab, synergistic drug interactions were observed in four different HER-2-overexpressing cell lines. Moreover, lapatinib retained significant in vitro activity against cell lines selected for long-term outgrowth (>9 months) in trastuzumab-containing (100 microg/mL) culture medium. These observations provide a clear biological rationale to test lapatinib as a single agent or in combination with trastuzumab in HER-2-overexpressing breast cancer and in patients with clinical resistance to trastuzumab.


Oncogene | 2002

Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways.

Wenle Xia; Robert J. Mullin; Barry R. Keith; Leihua Liu; Hong Ma; David W. Rusnak; Gary Owens; Krystal J. Alligood; Neil L. Spector

Dual EGFR/erbB2 inhibition is an attractive therapeutic strategy for epithelial tumors, as ligand-induced erbB2/EGFR heterodimerization triggers potent proliferative and survival signals. Here we show that a small molecule, GW572016, potently inhibits both EGFR and erbB2 tyrosine kinases leading to growth arrest and/or apoptosis in EGFR and erbB2-dependent tumor cell lines. GW572016 markedly reduced tyrosine phosphorylation of EGFR and erbB2, and inhibited activation of Erk1/2 and AKT, downstream effectors of proliferation and cell survival, respectively. Complete inhibition of activated AKT in erbB2 overexpressing cells correlated with a 23-fold increase in apoptosis compared with vehicle controls. EGF, often elevated in cancer patients, did not reverse the inhibitory effects of GW572016. These observations were reproduced in vivo, where GW572016 treatment inhibited activation of EGFR, erbB2, Erk1/2 and AKT in human tumor xenografts. Erk1/2 and AKT represent potential biomarkers to assess the clinical activity of GW572016. Inhibition of activated AKT in EGFR or erbB2-dependent tumors by GW572016 may lead to tumor regressions when used as a monotherapy, or may enhance the anti-tumor activity of chemotherapeutics, since constitutive activation of AKT has been linked to chemo-resistance.


Cancer Research | 2006

Demonstration of a Genetic Therapeutic Index for Tumors Expressing Oncogenic BRAF by the Kinase Inhibitor SB-590885

Alastair J. King; Denis R. Patrick; Roberta S. Batorsky; Maureen L. Ho; Hieu T. Do; Shu Yun Zhang; Rakesh Kumar; David W. Rusnak; Andrew K. Takle; David M. Wilson; Erin D. Hugger; Lifu Wang; Florian A. Karreth; Julie Lougheed; Jae Lee; David Hau Wing Chau; Thomas J. Stout; Earl W. May; Cynthia M. Rominger; Michael D. Schaber; Lusong Luo; Ami S. Lakdawala; Jerry L. Adams; Rooja G. Contractor; Keiran S.M. Smalley; Meenhard Herlyn; Michael M. Morrissey; David A. Tuveson; Pearl S. Huang

Oncogenic BRAF alleles are both necessary and sufficient for cellular transformation, suggesting that chemical inhibition of the activated mutant protein kinase may reverse the tumor phenotype. Here, we report the characterization of SB-590885, a novel triarylimidazole that selectively inhibits Raf kinases with more potency towards B-Raf than c-Raf. Crystallographic analysis revealed that SB-590885 stabilizes the oncogenic B-Raf kinase domain in an active configuration, which is distinct from the previously reported mechanism of action of the multi-kinase inhibitor, BAY43-9006. Malignant cells expressing oncogenic B-Raf show selective inhibition of mitogen-activated protein kinase activation, proliferation, transformation, and tumorigenicity when exposed to SB-590885, whereas other cancer cell lines and normal cells display variable sensitivities or resistance to similar treatment. These studies support the validation of oncogenic B-Raf as a target for cancer therapy and provide the first evidence of a correlation between the expression of oncogenic BRAF alleles and a positive response to a selective B-Raf inhibitor.


Molecular Cancer Therapeutics | 2007

Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles

Priti S. Hegde; David W. Rusnak; Melissa Bertiaux; Krystal J. Alligood; Jay C. Strum; Robert Gagnon; Tona M. Gilmer

Lapatinib (GW572016) is a small-molecule dual inhibitor of epidermal growth factor receptor (ErbB1) and ErbB2 receptor kinase activities currently in phase III clinical trials. We used phosphoprotein and microarray analyses to carry out targeted pathway studies of phosphorylation and gene expression changes in human breast cancer cell lines in the presence or absence of lapatinib. Studies were done in four breast cancer cell lines, two of which were responsive and two of which were nonresponsive to lapatinib. Responsive cell lines, BT474 and SKBr3, constitutively overexpress ErbB2 and show an IC50 of 25 or 32 nmol/L for lapatinib, respectively. In contrast, nonresponsive MDA-MB-468 and T47D cells expressed a low basal level of ErbB2 and showed IC50 values in the micromolar range. Cells responsive to lapatinib exhibited strong differential effects on multiple genes in the AKT pathway. After 12 h of exposure to 1.0 μmol/L of lapatinib, AKT1, MAPK9, HSPCA, IRAK1, and CCND1 transcripts were down-regulated 7- to 25-fold in responsive BT474 and SKBr3 cells. In contrast, lapatinib weakly down-regulated the AKT pathway in nonresponsive breast cancer cell lines (<5-fold down-regulation of most genes in the pathway). Furthermore, the proapoptotic gene FOXO3A, which is negatively regulated by AKT, was up-regulated 7- and 25-fold in lapatinib-responsive SKBr3 and BT474 cells, respectively. Phosphorylated Akt and Akt-mediated phosphorylation of FOXO3A also decreased in responsive breast cancer cell lines exposed to lapatinib. Gene expression profiling also revealed that lapatinib stimulated the expression of estrogen and progesterone receptors and modulated the expression of genes involved in cell cycle control, glycolysis, and fatty acid metabolism. In BT474 and T47D cells, which expressed moderate basal levels of the estrogen and progesterone receptors, 1.0 μmol/L of lapatinib induced expression by 7- to 11-fold. These data provide insight into the mechanism of action of lapatinib in breast cancer cells. [Mol Cancer Ther 2007;6(5):1629–40]


Proceedings of the National Academy of Sciences of the United States of America | 2008

6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases

Edgar R. Wood; Lisa M. Shewchuk; Byron Ellis; Perry S. Brignola; Ronald L. Brashear; Thomas R. Caferro; Scott Howard Dickerson; Hamilton D. Dickson; Kelly Horne Donaldson; Michael David Gaul; Robert J. Griffin; Anne M. Hassell; Barry R. Keith; Robert J. Mullin; Kimberly G. Petrov; Michael J. Reno; David W. Rusnak; Sarva M. Tadepalli; John C. Ulrich; Craig D. Wagner; Dana Vanderwall; Alex G. Waterson; Jon D. Williams; Wendy L. White; David E. Uehling

Analysis of the x-ray crystal structure of mono-substituted acetylenic thienopyrimidine 6 complexed with the ErbB family enzyme ErbB-4 revealed a covalent bond between the terminal carbon of the acetylene moiety and the sulfhydryl group of Cys-803 at the solvent interface. The identification of this covalent adduct suggested that acetylenic thienopyrimidine 6 and related analogs might also be capable of forming an analogous covalent adduct with EGFR, which has a conserved cysteine (797) near the ATP binding pocket. To test this hypothesis, we treated a truncated, catalytically competent form of EGFR (678–1020) with a structurally related propargylic amine (8). An investigation of the resulting complex by mass spectrometry revealed the formation of a covalent complex of thienopyrimidine 8 with Cys-797 of EGFR. This finding enabled us to readily assess the irreversibility of various inhibitors and also facilitated a structure–activity relationship understanding of the covalent modifying potential and biological activity of a series of acetylenic thienopyrimidine compounds with potent antitumor activity. Several ErbB family enzyme and cell potent 6-ethynyl thienopyrimidine kinase inhibitors were found to form covalent adducts with EGFR.


Bioorganic & Medicinal Chemistry Letters | 2009

Thienopyrimidine-based dual EGFR/ErbB-2 inhibitors.

Tara Renae Rheault; Thomas R. Caferro; Scott Howard Dickerson; Kelly Horne Donaldson; Michael David Gaul; Aaron S. Goetz; Robert J. Mullin; Octerloney B. McDonald; Kimberly G. Petrov; David W. Rusnak; Lisa M. Shewchuk; Glenn M. Spehar; Anne T. Truesdale; Dana E. Vanderwall; Edgar R. Wood; David E. Uehling

Two new series of potent and selective dual EGFR/ErbB-2 kinase inhibitors derived from novel thienopyrimidine cores have been identified. Isomeric thienopyrimidine cores were evaluated as isosteres for a 4-anilinoquinazoline core and several analogs containing the thieno[3,2-d]pyrimidine core showed anti-proliferative activity with IC(50) values less than 1 microM against human tumor cells in vitro.


Cancer Research | 2008

Impact of Common Epidermal Growth Factor Receptor and HER2 Variants on Receptor Activity and Inhibition by Lapatinib

Tona M. Gilmer; Louann Cable; Krystal J. Alligood; David W. Rusnak; Glenn M. Spehar; Kathleen T. Gallagher; Ermias Woldu; H. Luke Carter; Anne T. Truesdale; Lisa M. Shewchuk; Edgar R. Wood

The goal of this study was to characterize the effects of non-small cell lung carcinoma (NSCLC)-associated mutations in epidermal growth factor receptor (EGFR/ErbB1) and HER2 (ErbB2) on interactions with the dual tyrosine kinase inhibitor lapatinib. Biochemical studies show that commonly observed variants of EGFR [G719C, G719S, L858R, L861Q, and Delta746-750 (del15)] are enzyme activating, increasing the tyrosine kinase V(max) and increasing the K(m)((app)) for ATP. The point mutations G719C and L861Q had minor effects on lapatinib K(i)s, whereas EGFR mutations L858R and del15 had a higher K(i) for lapatinib than wild-type EGFR. Structural analysis of wild-type EGFR-lapatinib complexes and modeling of the EGFR mutants were consistent with these data, suggesting that loss of structural flexibility and possible stabilization of the active-like conformation could interfere with lapatinib binding, particularly to the EGFR deletion mutants. Furthermore, EGFR deletion mutants were relatively resistant to lapatinib-mediated inhibition of receptor autophosphorylation in recombinant cells expressing the variants, whereas EGFR point mutations had a modest or no effect. Of note, EGFR T790M, a receptor variant found in patients with gefitinib-resistant NSCLC, was also resistant to lapatinib-mediated inhibition of receptor autophosphorylation. Two HER2 insertional variants found in NSCLC were less sensitive to lapatinib inhibition than two HER2 point mutants. The effects of lapatinib on the proliferation of human NSCLC tumor cell lines expressing wild-type or variant EGFR and HER2 cannot be explained solely on the basis of the biochemical activity or receptor autophosphorylation in recombinant cells. These data suggest that cell line genetic heterogeneity and/or multiple determinants modulate the role played by EGFR/HER2 in regulating cell proliferation.


Bioorganic & Medicinal Chemistry Letters | 2003

Discovery and biological evaluation of potent dual ErbB-2/EGFR tyrosine kinase inhibitors: 6-thiazolylquinazolines.

Micheal D. Gaul; Yu Guo; Karen Affleck; G. Stuart Cockerill; Tona M. Gilmer; Robert J. Griffin; Stephen Barry Guntrip; Barry R. Keith; Wilson B. Knight; Robert J. Mullin; Doris M. Murray; David W. Rusnak; Kathryn Jane Smith; Sarva M. Tadepalli; Edgar R. Wood; Karen Lackey

We have identified a novel class of 6-thiazolylquinazolines as potent and selective inhibitors of both ErbB-2 and EGFR tyrosine kinase activity, with IC(50) values in the nanomolar range. These compounds inhibited the growth of both EGFR (HN5) and ErbB-2 (BT474) over-expressing human tumor cell lines in vitro. Using xenograft models of the same cell lines, we found that the compounds given orally inhibited in vivo tumor growth significantly compared with control animals.


Bioorganic & Medicinal Chemistry Letters | 2008

Dual EGFR/ErbB-2 inhibitors from novel pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines

Robert D. Hubbard; Scott Howard Dickerson; Holly Kathleen Emerson; Robert J. Griffin; Michael J. Reno; Keith R. Hornberger; David W. Rusnak; Edgar R. Wood; David E. Uehling; Alex G. Waterson

A novel class of substituted pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines has been identified that are potent and selective inhibitors of both EGFR/ErbB-2 receptor tyrosine kinases. The inhibitors are found to display a range of enzyme and cellular potency and also to display a varying level of covalent modification of the kinase targets. Selected molecules, including compound 15h, were found to be potent in enzymatic and cellular assays while also demonstrating exposure in the mouse from an oral dose.

Collaboration


Dive into the David W. Rusnak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge