Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Wacey is active.

Publication


Featured researches published by David Wacey.


Philosophical Transactions of the Royal Society B | 2006

A fresh look at the fossil evidence for early Archaean cellular life

Martin D. Brasier; Nicola McLoughlin; Owen R. Green; David Wacey

The rock record provides us with unique evidence for testing models as to when and where cellular life first appeared on Earth. Its study, however, requires caution. The biogenicity of stromatolites and ‘microfossils’ older than 3.0 Gyr should not be accepted without critical analysis of morphospace and context, using multiple modern techniques, plus rejection of alternative non-biological (null) hypotheses. The previous view that the co-occurrence of biology-like morphology and carbonaceous chemistry in ancient, microfossil-like objects is a presumptive indicator of biogenicity is not enough. As with the famous Martian microfossils, we need to ask not ‘what do these structures remind us of?’, but ‘what are these structures?’ Earths oldest putative ‘microfossil’ assemblages within 3.4–3.5 Gyr carbonaceous cherts, such as the Apex Chert, are likewise self-organizing structures that do not pass tests for biogenicity. There is a preservational paradox in the fossil record prior to ca 2.7 Gyr: suitable rocks (e.g. isotopically light carbonaceous cherts) are widely present, but signals of life are enigmatic and hard to decipher. One new approach includes detailed mapping of well-preserved sandstone grains in the ca 3.4 Gyr Strelley Pool Chert. These can contain endolithic microtubes showing syngenicity, grain selectivity and several levels of geochemical processing. Preliminary studies invite comparison with a class of ambient inclusion trails of putative microbial origin and with the activities of modern anaerobic proteobacteria and volcanic glass euendoliths.


Astrobiology | 2013

Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia

Nora Noffke; Daniel Christian; David Wacey; Robert M. Hazen

Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago.


Geology | 2010

Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone

David Wacey; Nicola McLoughlin; Martin J. Whitehouse; Matt R. Kilburn

A sandstone from the ca. 3400 Ma Strelley Pool Formation of Western Australia contains pristine micron-sized pyrite intimately associated with organic material coating framework quartz grains. A synsedimentary to early diagenetic origin for this pyrite is indicated by its occurrence in black, bedded sandstone at the base of the formation, and in reworked black clasts higher up in the formation. High-resolution multiple sulfur isotope analysis (32S, 33S, 34S) using secondary ion mass spectrometry (NanoSIMS and large-radius ion microprobe) reveals δ34SVCDT (Vienna Canyon Diablo troilite) values between ∼–12‰ and +6‰, and Δ33S values between –1.65‰ and +1.43‰, from pyrite grains within a single thin section. A large spread of δ34S values over only 5–10 μm, together with the spatial association of pyrite with carbon and nitrogen, indicates biological processing of sulfur. The presence of both +Δ33S and –Δ33S signals overprinted by significant mass-dependent δ34S fractionation in this pyrite population indicates for the first time that both microbial sulfate reduction of aqueous sulfate (–Δ33S) and microbial disproportionation of elemental sulfur (+Δ33S) were co-occurring in an open-marine, sedimentary hosted ecosystem in the Paleoarchean.


Journal of the Geological Society | 2008

Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone

David Wacey; Matt R. Kilburn; Nicola McLoughlin; John Parnell; Crispin A. Stoakes; C.R.M. Grovenor; Martin D. Brasier

Ambient inclusion trails (AIT) are enigmatic microtubular structures created by the migration of mineral crystals through a lithified substrate. The decomposition of organic material has been suggested as the driving force for the crystal migration, but has yet to be rigorously tested. AIT may hold potential as a biosignature for investigating early life on Earth if the associated organic material can be shown to be biological. This paper attempts to test the formation mechanism and biogenicity of AIT from the c. 3400 Ma Strelley Pool sandstone of Western Australia using NanoSIMS technology. In doing so, we demonstrate the unique ability of the NanoSIMS to combine sub-micron scale imaging with in situ chemical and isotopic data, thereby enhancing our ability to evaluate the biogenicity criteria for Archaean microstructures. Enrichments of a suite of major elements (C, N, P, S) and trace elements (Co, Fe, Ni, Zn), often associated with biological processes, are found within several AIT in this sandstone. C and N enrichments are most common along AIT margins, and correlate with depletions of Si, O, Ca and Mg, indicating that this material is indeed organic in nature. δ13C values of this carbonaceous material average −26‰. Petrographic observations show that some of the AIT occur in the centre of detrital sandstone grains where they were sealed from later fluid flow and therefore preserve primary Archaean (bio)geochemistry. In contrast, AIT found around the outer edges of sandstone grains may contain more recent organic material introduced by later fluid migration and are an unreliable biosignature. Using the petrographic and geochemical data a multi-stage model for AIT formation and subsequent diagenetic modification is proposed. The possible sources of the primary organic material are discussed and we conclude that the data are consistent with a biological origin for these AIT. An abiogenic origin is more difficult to sustain but cannot yet be completely excluded for AIT in general.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Changing the picture of Earth's earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries.

Martin D. Brasier; Jonathan B. Antcliffe; Martin Saunders; David Wacey

Significance Precambrian fossils are essential for understanding the emergence of complex life. New analytical tools and new fossil discoveries are now changing the picture, allowing us to refine and extend our knowledge about the early fossil record. High-resolution data from 3.46-Ga Apex chert microbiota help us to test rigorous criteria for studying the early fossil record. Preservational windows in the 1.88-Ga Gunflint chert allow us to posit novel cellular forms, and emphasize the critical role played by the fossil record in understanding early biodiversity. Micromapping of 3.43-Ga Strelley Pool sandstone reveals microfossils preserved between sand grains from the earliest known shoreline, reminding us that many kinds of ancient habitat have yet to be explored in this way. New analytical approaches and discoveries are demanding fresh thinking about the early fossil record. The 1.88-Ga Gunflint chert provides an important benchmark for the analysis of early fossil preservation. High-resolution analysis of Gunflintia shows that microtaphonomy can help to resolve long-standing paleobiological questions. Novel 3D nanoscale reconstructions of the most ancient complex fossil Eosphaera reveal features hitherto unmatched in any crown-group microbe. While Eosphaera may preserve a symbiotic consortium, a stronger conclusion is that multicellular morphospace was differently occupied in the Paleoproterozoic. The 3.46-Ga Apex chert provides a test bed for claims of biogenicity of cell-like structures. Mapping plus focused ion beam milling combined with transmission electron microscopy data demonstrate that microfossil-like taxa, including species of Archaeoscillatoriopsis and Primaevifilum, are pseudofossils formed from vermiform phyllosilicate grains during hydrothermal alteration events. The 3.43-Ga Strelley Pool Formation shows that plausible early fossil candidates are turning up in unexpected environmental settings. Our data reveal how cellular clusters of unexpectedly large coccoids and tubular sheath-like envelopes were trapped between sand grains and entombed within coatings of dripstone beach-rock silica cement. These fossils come from Earth’s earliest known intertidal to supratidal shoreline deposit, accumulated under aerated but oxygen poor conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ∼1.9-Ga Gunflint chert

David Wacey; Nicola McLoughlin; Matt R. Kilburn; Martin Saunders; John Cliff; Charlie Kong; Mark E. Barley; Martin D. Brasier

The 1.88-Ga Gunflint biota is one of the most famous Precambrian microfossil lagerstätten and provides a key record of the biosphere at a time of changing oceanic redox structure and chemistry. Here, we report on pyritized replicas of the iconic autotrophic Gunflintia–Huroniospora microfossil assemblage from the Schreiber Locality, Canada, that help capture a view through multiple trophic levels in a Paleoproterozoic ecosystem. Nanoscale analysis of pyritic Gunflintia (sheaths) and Huroniospora (cysts) reveals differing relic carbon and nitrogen distributions caused by contrasting spectra of decay and pyritization between taxa, reflecting in part their primary organic compositions. In situ sulfur isotope measurements from individual microfossils (δ34SV-CDT +6.7‰ to +21.5‰) show that pyritization was mediated by sulfate-reducing microbes within sediment pore waters whose sulfate ion concentrations rapidly became depleted, owing to occlusion of pore space by coeval silicification. Three-dimensional nanotomography reveals additional pyritized biomaterial, including hollow, cellular epibionts and extracellular polymeric substances, showing a preference for attachment to Gunflintia over Huroniospora and interpreted as components of a saprophytic heterotrophic, decomposing community. This work also extends the record of remarkable biological preservation in pyrite back to the Paleoproterozoic and provides criteria to assess the authenticity of even older pyritized microstructures that may represent some of the earliest evidence for life on our planet.


Geology | 2012

Going nano: A new step toward understanding the processes governing freshwater ooid formation

Muriel Pacton; Daniel Ariztegui; David Wacey; Matt R. Kilburn; Claire Rollion-Bard; Rédha Farah; Crisogono Vasconcelos

Marine and freshwater ooids were historically thought to form by purely physicochemical processes in turbulent environments. Recently, organomineralization has been identified as a key process for the initiation of freshwater ooid cortex formation, but the exact biochemical mechanism(s) involved and subsequent contribution to the development of the growing cortex remain unknown. Here, we show that photosynthetic microbes not only enhance early carbonate precipitation around the ooid nucleus but also control the formation of the entire cortex in freshwater ooids from Lake Geneva, Switzerland. Microbial extracellular polymeric substances are first permineralized as amorphous magnesium silicates ( am Mg-Si) before being calcified. An ∼5‰–6‰ depletion of 13 C in ooid cortices compared to both bulk values and carbonate nuclei supports this photosynthetic microbial mechanism and argues against contributions from sulfate-reducing bacteria or methanogens. These data have significant implications for paleoenvironmental studies since photosynthetic microbes now provide an alternative to turbulent hydrodynamic conditions in the formation of freshwater ooids.


Astrobiology | 2011

Pumice as a Remarkable Substrate for the Origin of Life

Martin D. Brasier; Richard Matthewman; Sean McMahon; David Wacey

The context for the emergence of life on Earth sometime prior to 3.5 billion years ago is almost as big a puzzle as the definition of life itself. Hitherto, the problem has largely been addressed in terms of theoretical and experimental chemistry plus evidence from extremophile habitats like modern hydrothermal vents and meteorite impact structures. Here, we argue that extensive rafts of glassy, porous, and gas-rich pumice could have had a significant role in the origin of life and provided an important habitat for the earliest communities of microorganisms. This is because pumice has four remarkable properties. First, during eruption it develops the highest surface-area-to-volume ratio known for any rock type. Second, it is the only known rock type that floats as rafts at the air-water interface and then becomes beached in the tidal zone for long periods of time. Third, it is exposed to an unusually wide variety of conditions, including dehydration. Finally, from rafting to burial, it has a remarkable ability to adsorb metals, organics, and phosphates as well as to host organic catalysts such as zeolites and titanium oxides. These remarkable properties now deserve to be rigorously explored in the laboratory and the early rock record.


Scientific Reports | 2015

Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

David Wacey; Martin Saunders; Malcolm Roberts; Sarath Menon; Leonard Green; Charlie Kong; Timothy Culwick; Paul K. Strother; Martin D. Brasier

Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.


Geology | 2015

Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping

David Wacey; Matt R. Kilburn; Martin Saunders; John Cliff; Charlie Kong; Alexander G. Liu; Jack J. Matthews; Martin D. Brasier

Framboidal pyrite has been used as a paleo-redox proxy and a biomarker in ancient sediments, but the interpretation of pyrite framboids can be controversial, especially where later overgrowths have obscured primary textures. Here we show how nano-scale chemical mapping of organic carbon and nitrogen (CN org ) can detect relict framboids within Precambrian pyrite grains and determine their formation mechanism. Pyrite grains associated with an Ediacaran fossil Lagerstatte from Newfoundland (ca. 560 Ma) hold significance for our understanding of taphonomy and redox history of the earliest macrofossil assemblages. They show distinct chemical zoning with respect to CN org . Relict framboids are revealed as spheroidal zones within larger pyrite grains, whereby pure pyrite microcrystals are enclosed by a mesh-like matrix of pyrite possessing elevated CN org , replicating observations from framboids growing within modern biofilms. Subsequent pyrite overgrowths also incorporated CN org from biofilms, with concentric CN org zoning showing that the availability of CN org progressively decreased during later pyrite growth. Multiple framboids are commonly cemented together by these overgrowths to form larger grains, with relict framboids only detectable in CN org maps. In situ sulfur isotope data (δ 34 S = ∼−24‰ to −15‰) show that the source of sulfur for the pyrite was also biologically mediated, most likely via a sulfate-reducing microbial metabolism within the biofilms. Relict framboids have significantly smaller diameters than the pyrite grains that enclose them, suggesting that the use of framboid diameters to infer water column paleo-redox conditions should be approached with caution. This work shows that pyrite framboids have formed within organic biofilms for at least 560 m.y., and provides a novel methodology that could readily be extended to search for such biomarkers in older rocks and potentially on other planets.

Collaboration


Dive into the David Wacey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Saunders

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Matt R. Kilburn

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlie Kong

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

John Cliff

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Matt Kilburn

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Sarath Menon

Naval Postgraduate School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge