Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Saunders is active.

Publication


Featured researches published by Martin Saunders.


Nature | 2012

Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons

Christoph Daniel Treiber; Marion Claudia Salzer; Johannes Riegler; Nathaniel Edelman; Cristina Sugar; Martin Breuss; Paul Pichler; Herve Cadiou; Martin Saunders; Mark F. Lythgoe; Jeremy Shaw; David A. Keays

Understanding the molecular and cellular mechanisms that mediate magnetosensation in vertebrates is a formidable scientific problem. One hypothesis is that magnetic information is transduced into neuronal impulses by using a magnetite-based magnetoreceptor. Previous studies claim to have identified a magnetic sense system in the pigeon, common to avian species, which consists of magnetite-containing trigeminal afferents located at six specific loci in the rostral subepidermis of the beak. These studies have been widely accepted in the field and heavily relied upon by both behavioural biologists and physicists. Here we show that clusters of iron-rich cells in the rostro-medial upper beak of the pigeon Columbia livia are macrophages, not magnetosensitive neurons. Our systematic characterization of the pigeon upper beak identified iron-rich cells in the stratum laxum of the subepidermis, the basal region of the respiratory epithelium and the apex of feather follicles. Using a three-dimensional blueprint of the pigeon beak created by magnetic resonance imaging and computed tomography, we mapped the location of iron-rich cells, revealing unexpected variation in their distribution and number—an observation that is inconsistent with a role in magnetic sensation. Ultrastructure analysis of these cells, which are not unique to the beak, showed that their subcellular architecture includes ferritin-like granules, siderosomes, haemosiderin and filopodia, characteristics of iron-rich macrophages. Our conclusion that these cells are macrophages and not magnetosensitive neurons is supported by immunohistological studies showing co-localization with the antigen-presenting molecule major histocompatibility complex class II. Our work necessitates a renewed search for the true magnetite-dependent magnetoreceptor in birds.


Geology | 2008

Naturally occurring gold nanoparticles and nanoplates

Robert M. Hough; Ryan Noble; G.J. Hitchen; Robert D. Hart; Steven M. Reddy; Martin Saunders; Peta L. Clode; D. Vaughan; J. Lowe; D.J. Gray; R.R. Anand; C.R.M. Butt; Michael Verrall

During the weathering of gold deposits, exceptionally pure, <200 nm diameter, nanoparticulate gold plates (6 nm thick) are formed. The particles display controlled growth of both size and shape and signs of assembly to form belts and sheets. The gold is associated and intergrown with minerals formed by evaporation and is interpreted to have been deposited rapidly from saline groundwater during a drying event. The size and morphology of the gold nanoparticles and nanoplates are identical to the products of experimentally manufactured gold colloids. This represents the fi rst direct observation of colloidal nanoparticulate gold in nature, confi rming this as an active mechanism of gold transport during the weathering of gold deposits.


Applied Physics Letters | 2006

Magnesium oxide as a candidate high-κ gate dielectric

Liang Yan; C.M. Lopez; R.P. Shrestha; E. A. Irene; Alexandra Suvorova; Martin Saunders

Magnesium oxide (MgO) thin films with sharp interfaces were deposited by sputtering of a Mg target on Si. The film stack was characterized using spectroscopic ellipsometry and transmission electron microscopy and the film static dielectric constant (κ) and interface traps were determined. An amorphous SiO2 layer was found at the MgO∕Si interface as a result of subcutaneous Si oxidation. κ for the MgO films was found to be about twice that of SiO2, and the interface trap densities of MgO∕Si were found to be comparable with SiO2∕Si, rendering MgO competitive with all presently considered high-κ dielectrics.


Toxicology and Applied Pharmacology | 2010

Uptake and cytotoxicity of chitosan nanoparticles in human liver cells

Jing Wen Loh; George Yeoh; Martin Saunders; Lee Yong Lim

Despite extensive research into the biomedical and pharmaceutical applications of nanoparticles, and the liver being the main detoxifying organ in the human body, there are limited studies which delineate the hepatotoxicity of nanoparticles. This paper reports on the biological interactions between liver cells and chitosan nanoparticles, which have been widely recognised as biocompatible. Using the MTT assay, human liver cells were shown to tolerate up to 4h of exposure to 0.5% w/v of chitosan nanoparticles (18±1 nm, 7.5±1.0 mV in culture medium). At nanoparticle concentrations above 0.5% w/v, cell membrane integrity was compromised as evidenced by leakage of alanine transaminase into the extracellular milieu, and there was a dose-dependent increase in CYP3A4 enzyme activity. Uptake of chitosan nanoparticles into the cell nucleus was observed by confocal microscopic analysis after 4h exposure with 1% w/v of chitosan nanoparticles. Electron micrographs further suggest necrotic or autophagic cell death, possibly caused by cell membrane damage and resultant enzyme leakage.


Nanotechnology | 2006

Mechanochemical synthesis of nanocrystalline SnO2–ZnO photocatalysts

Aaron Dodd; Allan J. McKinley; Martin Saunders; Takuya Tsuzuki

Mechanochemical processing of anhydrous chloride precursors with Na2CO3 has been investigated as a means of manufacturing nanocrystalline SnO2 doped ZnO photocatalysts. High-energy milling and heat-treatment of a 0.1SnCl2+0.9ZnCl2+Na2CO3+4NaCl reactant mixture was found to result in the formation of a composite powder consisting of oxide grains embedded within a matrix of NaCl. Subsequent washing with deionized water resulted in removal of the NaCl matrix phase and partial hydration of the oxide reaction product with the consequent formation of ZnSn(OH)6. The extent of this hydration reaction was found to decrease in a linear fashion with the temperature of the post-milling heat-treatment over the range of 400–700 °C. For a heat-treatment temperature of 700 °C, the SnO2 doped ZnO powder was found to exhibit significantly higher photocatalytic activity than either single-phase SnO2 or ZnO powders that were synthesized using similar processing conditions. The heightened photocatalytic activity of the SnO2 doped ZnO was attributed to its higher specific surface area and the enhanced charge separation arising from the coupling of ZnO with SnO2.


ACS Nano | 2011

Multimodal analysis of PEI-mediated endocytosis of nanoparticles in neural cells.

Cameron W. Evans; Melinda Fitzgerald; Tristan D. Clemons; Michael J. House; Benjamin S. Padman; Jeremy Shaw; Martin Saunders; Alan R. Harvey; Bogdan Zdyrko; Igor Luzinov; Gabriel A. Silva; Sarah A. Dunlop; K. Swaminathan Iyer

Polymer nanoparticles are widely used as a highly generalizable tool to entrap a range of different drugs for controlled or site-specific release. However, despite numerous studies examining the kinetics of controlled release, the biological behavior of such nanoparticles remains poorly understood, particularly with respect to endocytosis and intracellular trafficking. We synthesized polyethylenimine-decorated polymer nanospheres (ca. 100-250 nm) of the type commonly used for drug release and used correlated electron microscopy, fluorescence spectroscopy and microscopy, and relaxometry to track endocytosis in neural cells. These capabilities provide insight into how polyethylenimine mediates the entry of nanoparticles into neural cells and show that polymer nanosphere uptake involves three distinct steps, namely, plasma membrane attachment, fluid-phase as well as clathrin- and caveolin-independent endocytosis, and progressive accumulation in membrane-bound intracellular vesicles. These findings provide detailed insight into how the intracellular delivery of nanoparticles is mediated by polyethylenimine, which is presently the most commonly used nonviral gene transfer agent. This fundamental knowledge may also assist in the preparation of next-generation nonviral vectors.


Clays and Clay Minerals | 2006

CLAY-SIZED MINERALS IN PERMAFROST-AFFECTED SOILS (CRYOSOLS) FROM KING GEORGE ISLAND, ANTARCTICA

Felipe Nogueira Bello Simas; Carlos Ernesto Gonçalves Reynaud Schaefer; Vander de Freitas Melo; Marcelo Braga Bueno Guerra; Martin Saunders; R. J. Gilkes

Cryosols from Maritime Antarctica have been less studied than soils from continental areas of Antarctica. In this work X-ray diffraction, difference X-ray diffraction, differential thermal analysis, thermogravimetry, transmission electron microscopy/energy dispersive spectroscopy and selective chemical dissolution were used to characterize the clay fraction of basaltic, acid sulfate and ornithogenic Cryosols from ice-free areas of Admiralty Bay, King George Island. Non-crystalline phases are important soil components and reach >75% of the clay fraction for some ornithogenic soils. Randomly interstratified smectite-hydroxy-Al-interlayered smectite is the main clay mineral of basaltic soils. Kaolinite, chlorite and regularly interstratified illite-smectite predominate in acid sulfate soils. Jarosite is also an important component of the clay fraction in these soils. Crystalline Al and Fe phosphates occur in the clay at sites directly affected by penguin activity and the chemical characteristics of these ornithogenic sites are controlled by highly reactive, non-crystalline Al, Si, Fe and P phases. Chemical weathering is an active process in Cryosols in Maritime Antarctica and is enhanced by the presence of sulfides for some parent materials, and faunal activity.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Changing the picture of Earth's earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries.

Martin D. Brasier; Jonathan B. Antcliffe; Martin Saunders; David Wacey

Significance Precambrian fossils are essential for understanding the emergence of complex life. New analytical tools and new fossil discoveries are now changing the picture, allowing us to refine and extend our knowledge about the early fossil record. High-resolution data from 3.46-Ga Apex chert microbiota help us to test rigorous criteria for studying the early fossil record. Preservational windows in the 1.88-Ga Gunflint chert allow us to posit novel cellular forms, and emphasize the critical role played by the fossil record in understanding early biodiversity. Micromapping of 3.43-Ga Strelley Pool sandstone reveals microfossils preserved between sand grains from the earliest known shoreline, reminding us that many kinds of ancient habitat have yet to be explored in this way. New analytical approaches and discoveries are demanding fresh thinking about the early fossil record. The 1.88-Ga Gunflint chert provides an important benchmark for the analysis of early fossil preservation. High-resolution analysis of Gunflintia shows that microtaphonomy can help to resolve long-standing paleobiological questions. Novel 3D nanoscale reconstructions of the most ancient complex fossil Eosphaera reveal features hitherto unmatched in any crown-group microbe. While Eosphaera may preserve a symbiotic consortium, a stronger conclusion is that multicellular morphospace was differently occupied in the Paleoproterozoic. The 3.46-Ga Apex chert provides a test bed for claims of biogenicity of cell-like structures. Mapping plus focused ion beam milling combined with transmission electron microscopy data demonstrate that microfossil-like taxa, including species of Archaeoscillatoriopsis and Primaevifilum, are pseudofossils formed from vermiform phyllosilicate grains during hydrothermal alteration events. The 3.43-Ga Strelley Pool Formation shows that plausible early fossil candidates are turning up in unexpected environmental settings. Our data reveal how cellular clusters of unexpectedly large coccoids and tubular sheath-like envelopes were trapped between sand grains and entombed within coatings of dripstone beach-rock silica cement. These fossils come from Earth’s earliest known intertidal to supratidal shoreline deposit, accumulated under aerated but oxygen poor conditions.


Metallomics | 2011

Visualising gold inside tumour cells following treatment with an antitumour gold(I) complex.

Louise E. Wedlock; Matt R. Kilburn; John Cliff; Luis Filgueira; Martin Saunders; Susan J. Berners-Price

Gold(I) phosphine complexes, such as [Au(d2pype)(2)]Cl, (1, where d2pype is 1,2-bis(di-2-pyridyl phosphinoethane)), belong to a class of promising chemotherapeutic candidates that have been shown to be selectively toxic to tumourigenic cells, and may act via uptake into tumour cell mitochondria. For a more holistic understanding of their mechanism of action, a deeper knowledge of their subcellular distribution is required, but to date this has been limited by a lack of suitable imaging techniques. In this study the subcellular distribution of gold was visualised in situ in human breast cancer cells treated with 1, using nano-scale secondary ion mass spectrometry. NanoSIMS ion maps of (12)C(14)N(-), (31)P(-), (34)S(-) and (197)Au(-) allowed, for the first time, visualisation of cellular morphology simultaneously with subcellular distribution of gold. Energy filtered transmission electron microscopy (EFTEM) element maps for gold were also obtained, allowing for observation of nuclear and mitochondrial morphology with excellent spatial resolution, and gold element maps comparable to the data obtained with NanoSIMS. Following 2 h treatment with 1, the subcellular distribution of gold was associated with sulfur-rich regions in the nucleus and cytoplasm, supporting the growing evidence for the the mechanism of action of Au(I) compounds based on inhibition of thiol-containing protein families, such as the thioredoxin system. The combination of NanoSIMS and EFTEM has broader applicability for studying the subcellular distribution of other types of metal-based drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ∼1.9-Ga Gunflint chert

David Wacey; Nicola McLoughlin; Matt R. Kilburn; Martin Saunders; John Cliff; Charlie Kong; Mark E. Barley; Martin D. Brasier

The 1.88-Ga Gunflint biota is one of the most famous Precambrian microfossil lagerstätten and provides a key record of the biosphere at a time of changing oceanic redox structure and chemistry. Here, we report on pyritized replicas of the iconic autotrophic Gunflintia–Huroniospora microfossil assemblage from the Schreiber Locality, Canada, that help capture a view through multiple trophic levels in a Paleoproterozoic ecosystem. Nanoscale analysis of pyritic Gunflintia (sheaths) and Huroniospora (cysts) reveals differing relic carbon and nitrogen distributions caused by contrasting spectra of decay and pyritization between taxa, reflecting in part their primary organic compositions. In situ sulfur isotope measurements from individual microfossils (δ34SV-CDT +6.7‰ to +21.5‰) show that pyritization was mediated by sulfate-reducing microbes within sediment pore waters whose sulfate ion concentrations rapidly became depleted, owing to occlusion of pore space by coeval silicification. Three-dimensional nanotomography reveals additional pyritized biomaterial, including hollow, cellular epibionts and extracellular polymeric substances, showing a preference for attachment to Gunflintia over Huroniospora and interpreted as components of a saprophytic heterotrophic, decomposing community. This work also extends the record of remarkable biological preservation in pyrite back to the Paleoproterozoic and provides criteria to assess the authenticity of even older pyritized microstructures that may represent some of the earliest evidence for life on our planet.

Collaboration


Dive into the Martin Saunders's collaboration.

Top Co-Authors

Avatar

Alexandra Suvorova

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Charlie Kong

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

David Wacey

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Jeremy Shaw

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Aaron Dodd

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Swaminathan Iyer

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Peta L. Clode

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Timothy G. St. Pierre

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge