Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Y. Hollinger is active.

Publication


Featured researches published by David Y. Hollinger.


Bulletin of the American Meteorological Society | 2001

FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities

Dennis D. Baldocchi; Eva Falge; Lianhong Gu; R. J. Olson; David Y. Hollinger; Steven W. Running; Peter M. Anthoni; Ch. Bernhofer; Kenneth J. Davis; Robert H. Evans; Jose D. Fuentes; Allen H. Goldstein; Gabriel G. Katul; Beverly E. Law; Xuhui Lee; Yadvinder Malhi; Tilden P. Meyers; William Munger; Walter Oechel; Kim Pilegaard; Hans Peter Schmid; Riccardo Valentini; Shashi B. Verma; Timo Vesala; Kell B. Wilson; S. C. Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.


Agricultural and Forest Meteorology | 2002

Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests

Peter E. Thornton; B. E. Law; Henry L. Gholz; Kenneth L. Clark; Eva Falge; David S. Ellsworth; Allen H. Goldstein; Russell K. Monson; David Y. Hollinger; Michael W. Falk; Jiquan Chen; Jed P. Sparks

The effects of disturbance history, climate, and changes in atmospheric carbon dioxide (CO2) concentration and nitrogen deposition (Ndep) on carbon and water fluxes in seven North American evergreen forests are assessed using a coupled water–carbon–nitrogen model, canopy-scale flux observations, and descriptions of the vegetation type, management practices, and disturbance histories at each site. The effects of interannual climate variability, disturbance history, and vegetation ecophysiology on carbon and water fluxes and storage are integrated by the ecosystem process model Biome-BGC, with results compared to site biometric analyses and eddy covariance observations aggregated by month and year. Model results suggest that variation between sites in net ecosystem carbon exchange (NEE) is largely a function of disturbance history, with important secondary effects from site climate, vegetation ecophysiology, and changing atmospheric CO2 and Ndep. The timing and magnitude of fluxes following disturbance depend on disturbance type and intensity, and on post-harvest management treatments such as burning, fertilization and replanting. The modeled effects of increasing atmospheric CO 2 on NEE are generally limited by N availability, but are greatly increased following disturbance due to increased N mineralization and reduced plant N demand. Modeled rates of carbon sequestration over the past 200 years are driven by the rate of change in CO2 concentration for old sites experiencing low rates of N dep. The model produced good estimates of between-site variation in leaf area index, with mixed performance for between- and within-site variation in evapotranspiration. There is a model bias


Nature | 2008

Net carbon dioxide losses of northern ecosystems in response to autumn warming

Shilong Piao; Philippe Ciais; Pierre Friedlingstein; Philippe Peylin; Markus Reichstein; Sebastiaan Luyssaert; Hank A. Margolis; Jingyun Fang; Alan G. Barr; Anping Chen; Achim Grelle; David Y. Hollinger; Tuomas Laurila; Anders Lindroth; Andrew D. Richardson; Timo Vesala

The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 °C and 0.8 °C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC °C-1, offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.


IEEE Transactions on Geoscience and Remote Sensing | 2006

Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations

Faith Ann Heinsch; Maosheng Zhao; Steven W. Running; John S. Kimball; Ramakrisbna Nemani; Kenneth J. Davis; Paul V. Bolstad; Bruce D. Cook; Ankur R. Desai; Daniel M. Ricciuto; Beverly E. Law; Walter Oechel; Hyojung Kwon; Hongyan Luo; Steven C. Wofsy; Allison L. Dunn; J. W. Munger; Dennis D. Baldocchi; Liukang Xu; David Y. Hollinger; Andrew D. Richardson; Paul C. Stoy; M. Siqueira; Russell K. Monson; Sean P. Burns; Lawrence B. Flanagan

The Moderate Resolution Spectroradiometer (MODIS) sensor has provided near real-time estimates of gross primary production (GPP) since March 2000. We compare four years (2000 to 2003) of satellite-based calculations of GPP with tower eddy CO2 flux-based estimates across diverse land cover types and climate regimes. We examine the potential error contributions from meteorology, leaf area index (LAI)/fPAR, and land cover. The error between annual GPP computed from NASAs Data Assimilation Offices (DAO) and tower-based meteorology is 28%, indicating that NASAs DAO global meteorology plays an important role in the accuracy of the GPP algorithm. Approximately 62% of MOD15-based estimates of LAI were within the estimates based on field optical measurements, although remaining values overestimated site values. Land cover presented the fewest errors, with most errors within the forest classes, reducing potential error. Tower-based and MODIS estimates of annual GPP compare favorably for most biomes, although MODIS GPP overestimates tower-based calculations by 20%-30%. Seasonally, summer estimates of MODIS GPP are closest to tower data, and spring estimates are the worst, most likely the result of the relatively rapid onset of leaf-out. The results of this study indicate, however, that the current MODIS GPP algorithm shows reasonable spatial patterns and temporal variability across a diverse range of biomes and climate regimes. So, while continued efforts are needed to isolate particular problems in specific biomes, we are optimistic about the general quality of these data, and continuation of the MOD17 GPP product will likely provide a key component of global terrestrial ecosystem analysis, providing continuous weekly measurements of global vegetation production


Nature | 2013

Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise

Trevor F. Keenan; David Y. Hollinger; Gil Bohrer; Danilo Dragoni; J. William Munger; Hans Peter Schmid; Andrew D. Richardson

Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata—small pores on the leaf surface that regulate gas exchange—to maintain a near-constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation–climate models.


Philosophical Transactions of the Royal Society B | 2010

Influence of spring and autumn phenological transitions on forest ecosystem productivity

Andrew D. Richardson; T. Andy Black; Philippe Ciais; Nicolas Delbart; Mark A. Friedl; Nadine Gobron; David Y. Hollinger; Werner L. Kutsch; Bernard Longdoz; Sebastiaan Luyssaert; Mirco Migliavacca; Leonardo Montagnani; J. William Munger; E.J. Moors; Shilong Piao; Corinna Rebmann; Markus Reichstein; Nobuko Saigusa; Enrico Tomelleri; Rodrigo Vargas; Andrej Varlagin

We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.


Tree Physiology | 2009

Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

Andrew D. Richardson; David Y. Hollinger; D. Bryan Dail; John T. Lee; J. William Munger; John O’Keefe

Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO(2) exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO(2) source-sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 micromol m(-2) s(-1) was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April-June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2-4 g C m(-2) day(-1). In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling rates and cascading effects on N uptake, foliar N concentrations and photosynthetic capacity.


Nature | 2011

Observed increase in local cooling effect of deforestation at higher latitudes

Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan G. Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert G. Drake; Allen H. Goldstein; Lianhong Gu; Gabriel G. Katul; Thomas E. Kolb; Beverly E. Law; Hank A. Margolis; Tilden P. Meyers; Russell K. Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf M. Staebler; Steven C. Wofsy; Lei Zhao

Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth’s surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks

Scott V. Ollinger; Andrew D. Richardson; Mary E. Martin; David Y. Hollinger; Stephen E. Frolking; Peter B. Reich; Lucie C. Plourde; Gabriel G. Katul; J. W. Munger; Ram Oren; K. T. Paw; Paul V. Bolstad; Bruce D. Cook; Timothy A. Martin; Russell K. Monson

The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earths climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models.


Journal of Geophysical Research | 2006

On the use of MODIS EVI to assess gross primary productivity of North American ecosystems

Daniel A. Sims; Abdullah F. Rahman; Vicente D. Cordova; Bassil Z. El-Masri; Dennis D. Baldocchi; Lawrence B. Flanagan; Allen H. Goldstein; David Y. Hollinger; Laurent Misson; Russell K. Monson; Walter C. Oechel; Hans Peter Schmid; Steven C. Wofsy; Liukang Xu

[1] Carbon flux models based on light use efficiency (LUE), such as the MOD17 algorithm, have proved difficult to parameterize because of uncertainties in the LUE term, which is usually estimated from meteorological variables available only at large spatial scales. In search of simpler models based entirely on remote-sensing data, we examined direct relationships between the enhanced vegetation index (EVI) and gross primary productivity (GPP) measured at nine eddy covariance flux tower sites across North America. When data from the winter period of inactive photosynthesis were excluded, the overall relationship between EVI and tower GPP was better than that between MOD17 GPP and tower GPP. However, the EVI/GPP relationships vary between sites. Correlations between EVI and GPP were generally greater for deciduous than for evergreen sites. However, this correlation declined substantially only for sites with the smallest seasonal variation in EVI, suggesting that this relationship can be used for all but the most evergreen sites. Within sites dominated by either evergreen or deciduous species, seasonal variation in EVI was best explained by the severity of summer drought. Our results demonstrate that EVI alone can provide estimates of GPP that are as good as, if not better than, current versions of the MOD17 algorithm for many sites during the active period of photosynthesis. Preliminary data suggest that inclusion of other remote-sensing products in addition to EVI, such as the MODIS land surface temperature (LST), may result in more robust models of carbon balance based entirely on remote-sensing data.

Collaboration


Dive into the David Y. Hollinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott V. Ollinger

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Eric A. Davidson

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ankur R. Desai

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge