Russell K. Monson
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell K. Monson.
Agricultural and Forest Meteorology | 2002
Kell B. Wilson; Allen H. Goldstein; Eva Falge; Marc Aubinet; Dennis D. Baldocchi; Paul Berbigier; Christian Bernhofer; R. Ceulemans; Han Dolman; Christopher B. Field; Achim Grelle; A. Ibrom; Beverly E. Law; Andrew S. Kowalski; Tilden P. Meyers; John Moncrieff; Russell K. Monson; Walter Oechel; John Tenhunen; Riccardo Valentini; Shashi B. Verma
A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site-years in FLUXNET, a network of eddy covariance sites measuring long-term carbon and energy fluxes in contrasting ecosystems and climates. Energy balance closure was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat (LE)) against available energy (net radiation, less the energy stored) and by solving for the energy balance ratio, the ratio of turbulent energy fluxes to available energy. These methods indicate a general lack of closure at most sites, with a mean imbalance in the order of 20%. The imbalance was prevalent in all measured vegetation types and in climates ranging from Mediterranean to temperate and arctic. There were no clear differences between sites using open and closed path infrared gas analyzers. At a majority of sites closure improved with turbulent intensity (friction velocity), but lack of total closure was still prevalent under most conditions. The imbalance was greatest during nocturnal periods. The results suggest that estimates of the scalar turbulent fluxes of sensible and LE are underestimated and/or that available energy is overestimated. The implications on interpreting long-term CO2 fluxes at FLUXNET sites depends on whether the imbalance results primarily from general errors associated
Journal of Geophysical Research | 1993
Alex Guenther; P. R. Zimmerman; Peter Harley; Russell K. Monson; Ray Fall
The temperature dependence of monoterpene emission varies among monoterpenes, plant species, and other factors, but a simple exponential relationship between emission rate (E) and leaf temperature (T), E = Es [exp (β(T - Ts))], provides a good approximation. A review of reported measurements suggests a best estimate of β = 0.09 K-1 for all plants and monoterpenes. Isoprene emissions increase with photosynthetically active radiation up to a saturation point at 700-900 μmol m-2 s-1. An exponential increase in isoprene emission is observed at leaf temperatures of less than 30°C. Emissions continue to increase with higher temperatures until a maximum emission rate is reached at about 40°C, after which emissions rapidly decline. This temperature dependence can be described by an enzyme activation equation that includes denaturation at high temperature. -from Authors
Agricultural and Forest Meteorology | 2002
Peter E. Thornton; B. E. Law; Henry L. Gholz; Kenneth L. Clark; Eva Falge; David S. Ellsworth; Allen H. Goldstein; Russell K. Monson; David Y. Hollinger; Michael W. Falk; Jiquan Chen; Jed P. Sparks
The effects of disturbance history, climate, and changes in atmospheric carbon dioxide (CO2) concentration and nitrogen deposition (Ndep) on carbon and water fluxes in seven North American evergreen forests are assessed using a coupled water–carbon–nitrogen model, canopy-scale flux observations, and descriptions of the vegetation type, management practices, and disturbance histories at each site. The effects of interannual climate variability, disturbance history, and vegetation ecophysiology on carbon and water fluxes and storage are integrated by the ecosystem process model Biome-BGC, with results compared to site biometric analyses and eddy covariance observations aggregated by month and year. Model results suggest that variation between sites in net ecosystem carbon exchange (NEE) is largely a function of disturbance history, with important secondary effects from site climate, vegetation ecophysiology, and changing atmospheric CO2 and Ndep. The timing and magnitude of fluxes following disturbance depend on disturbance type and intensity, and on post-harvest management treatments such as burning, fertilization and replanting. The modeled effects of increasing atmospheric CO 2 on NEE are generally limited by N availability, but are greatly increased following disturbance due to increased N mineralization and reduced plant N demand. Modeled rates of carbon sequestration over the past 200 years are driven by the rate of change in CO2 concentration for old sites experiencing low rates of N dep. The model produced good estimates of between-site variation in leaf area index, with mixed performance for between- and within-site variation in evapotranspiration. There is a model bias
Journal of Geophysical Research | 1991
Alex Guenther; Russell K. Monson; Ray Fall
Variability in the emission rates of isoprene and monoterpenes from individual leaves of Eucalyptus globulus was investigated with a laboratory gas exchange system and an environmental control leaf cuvette. For individual leaves, with constant environmental conditions, short-term (1 hour) fluctuations in isoprene emission rates were less than 3% while day-to-day fluctuations averaged 14%. Leaf-to-leaf variations were much larger (62%). Fluctuations with time and leaf-to-leaf variability in CO2 assimilation rates were of the same order as isoprene, while monoterpene variations were higher. Leaf age was identified as one of the factors contributing to leaf-to-leaf variability in CO2 assimilation and isoprene and monoterpene emission rates. Monoterpene emission rates were not influenced by light intensity or CO2 mixing ratio. The observed temperature dependence was the same for α-pinene and 1,8-cineole (an oxygenated monoterpene) and is similar to the temperature dependence of monoterpene emission rates reported by other investigators. Isoprene emissions were slightly dependent on humidity (1–3% increase in emission per 10% increase in relative humidity) and responded only to very low ( 600 ppm) CO2 mixing ratios. Isoprene emission was associated with the abaxial leaf side, which contains stomatal pores, while monoterpenes were emitted primarily from the adaxial side, which lacks stomatal pores. The temperature and light dependence of isoprene emission closely resembles relationships observed for electron transport in plant chloroplasts. For this reason, we have used a mechanistic electron transport model as the basis for an empirical isoprene emission rate model. The emission rate variation predicted by this model was within 10% of observed values for 62% of the 255 observations at light-saturated conditions and temperatures between 23° and 33°C. The entire data base includes over 600 observations at leaf temperatures ranging between 12° and 50°C and light intensities between 0 and 2000 μmol m−2 s−1. Nearly two thirds of the emission rates predicted for the entire data base were within a factor of 1.25, and 89% were within a factor of 2. The algorithms developed in this study provide a solid physiological basis for future efforts to model the biogenic flux of isoprene and monoterpenes into the atmosphere.
IEEE Transactions on Geoscience and Remote Sensing | 2006
Faith Ann Heinsch; Maosheng Zhao; Steven W. Running; John S. Kimball; Ramakrisbna Nemani; Kenneth J. Davis; Paul V. Bolstad; Bruce D. Cook; Ankur R. Desai; Daniel M. Ricciuto; Beverly E. Law; Walter Oechel; Hyojung Kwon; Hongyan Luo; Steven C. Wofsy; Allison L. Dunn; J. W. Munger; Dennis D. Baldocchi; Liukang Xu; David Y. Hollinger; Andrew D. Richardson; Paul C. Stoy; M. Siqueira; Russell K. Monson; Sean P. Burns; Lawrence B. Flanagan
The Moderate Resolution Spectroradiometer (MODIS) sensor has provided near real-time estimates of gross primary production (GPP) since March 2000. We compare four years (2000 to 2003) of satellite-based calculations of GPP with tower eddy CO2 flux-based estimates across diverse land cover types and climate regimes. We examine the potential error contributions from meteorology, leaf area index (LAI)/fPAR, and land cover. The error between annual GPP computed from NASAs Data Assimilation Offices (DAO) and tower-based meteorology is 28%, indicating that NASAs DAO global meteorology plays an important role in the accuracy of the GPP algorithm. Approximately 62% of MOD15-based estimates of LAI were within the estimates based on field optical measurements, although remaining values overestimated site values. Land cover presented the fewest errors, with most errors within the forest classes, reducing potential error. Tower-based and MODIS estimates of annual GPP compare favorably for most biomes, although MODIS GPP overestimates tower-based calculations by 20%-30%. Seasonally, summer estimates of MODIS GPP are closest to tower data, and spring estimates are the worst, most likely the result of the relatively rapid onset of leaf-out. The results of this study indicate, however, that the current MODIS GPP algorithm shows reasonable spatial patterns and temporal variability across a diverse range of biomes and climate regimes. So, while continued efforts are needed to isolate particular problems in specific biomes, we are optimistic about the general quality of these data, and continuation of the MOD17 GPP product will likely provide a key component of global terrestrial ecosystem analysis, providing continuous weekly measurements of global vegetation production
Nature | 2006
Russell K. Monson; David L. Lipson; Sean P. Burns; Andrew A. Turnipseed; Anthony C. Delany; Mark W. Williams; Steven K. Schmidt
Most terrestrial carbon sequestration at mid-latitudes in the Northern Hemisphere occurs in seasonal, montane forest ecosystems. Winter respiratory carbon dioxide losses from these ecosystems are high, and over half of the carbon assimilated by photosynthesis in the summer can be lost the following winter. The amount of winter carbon dioxide loss is potentially susceptible to changes in the depth of the snowpack; a shallower snowpack has less insulation potential, causing colder soil temperatures and potentially lower soil respiration rates. Recent climate analyses have shown widespread declines in the winter snowpack of mountain ecosystems in the western USA and Europe that are coupled to positive temperature anomalies. Here we study the effect of changes in snow cover on soil carbon cycling within the context of natural climate variation. We use a six-year record of net ecosystem carbon dioxide exchange in a subalpine forest to show that years with a reduced winter snowpack are accompanied by significantly lower rates of soil respiration. Furthermore, we show that the cause of the high sensitivity of soil respiration rate to changes in snow depth is a unique soil microbial community that exhibits exponential growth and high rates of substrate utilization at the cold temperatures that exist beneath the snow. Our observations suggest that a warmer climate may change soil carbon sequestration rates in forest ecosystems owing to changes in the depth of the insulating snow cover.
American Journal of Botany | 1997
Stanley D. Smith; Russell K. Monson; Jay E. Anderson
This book begins with the physical and biological characterization of the four North American deserts and a description of the primary adaptations of plants to environmental stress. In the following chapters the authors present case studies of key species representing dominant growth forms of the North American deserts, and provide an up-to-date and comprehensive review of the major patterns of adaptations in desert plants. One chapter is devoted to several important exotic plants that have invaded North American deserts. The book ends with a synthesis of the adaptations and resource requirements of North American desert plants. Further, it addresses how desert plants may respond to global climate change.
Ecology | 1999
David A. Lipson; Steven K. Schmidt; Russell K. Monson
Past studies of plant-microbe interactions in the alpine nitrogen cycle have revealed a seasonal separation of N use, with plants absorbing N primarily during the summer months and microbes immobilizing N primarily during the autumn months. On the basis of these studies, it has been concluded that competition for N between plants and microbes is minimized along this seasonal gradient. In this study, we examined more deeply the links between microbial population dynamics and plant N availability in an alpine dry meadow. We conducted a year-round field study and performed experiments on isolated soil microorganisms. Based on previous work in this ecosystem, we hypothesized that microbial biomass would decline before the plant growing season and would release N that would become available to plants. Microbial biomass was highest when soils were cold, in autumn, winter, and early spring. During this time, N was immobilized in microbial biomass. After snow melt in spring, microbial biomass decreased. A peak in the soil protein concentration was seen at this time, followed by peaks in soil amino acid and ammonium concentrations in late June. Soil protease rates were initially high after snow melt, decreased to below detection limits by midsummer, and partially recovered by late summer. Proteolytic activity in soil was saturated early in the growing season and became protein limited later in the summer. We concluded that the key event controlling N availability to alpine plants occurs after snow melt, when protein is released from the winter microbial biomass. This protein pulse provides substrate for soil proteases, which supply plants with amino acids during the growing season. On average, microbial biomass was lower in the summer than at other times, although the biomass fluctuated widely during the summer. Within the summer months, maximum numbers of amino-acid-degrading microorganisms and the max- imum amount of microbial biomass coincided with the peak in soil amino acids, when plants are most active. All bacterial strains isolated from this summer community had the ability to grow rapidly on low concentrations of amino acids and to degrade protein. This explains the previously observed result that the soil microbial biomass can compete strongly with plants for organic N, despite the seasonal offset of maximum plant and microbial N uptake.
Nature | 2003
Todd N. Rosenstiel; Mark J. Potosnak; Kevin L. Griffin; Ray Fall; Russell K. Monson
The emission of isoprene from the leaves of forest trees is a fundamental component of biosphere–atmosphere interactions, controlling many aspects of photochemistry in the lower atmosphere. As almost all commercial agriforest species emit high levels of isoprene, proliferation of agriforest plantations has significant potential to increase regional ozone pollution and enhance the lifetime of methane, an important determinant of global climate. Here we show that growth of an intact Populus deltoides plantation under increased CO2 (800 µmol mol-1 and 1,200 µmol mol-1) reduced ecosystem isoprene production by 21% and 41%, while above-ground biomass accumulation was enhanced by 60% and 82%, respectively. Exposure to increased CO2 significantly reduced the cellular content of dimethylallyl diphosphate, the substrate for isoprene synthesis, in both leaves and leaf protoplasts. We identify intracellular metabolic competition for phosphoenolpyruvate as a possible control point in explaining the suppression of isoprene emission under increased CO2. Our results highlight the potential for uncoupling isoprene emission from biomass accumulation in an agriforest species, and show that negative air-quality effects of proliferating agriforests may be offset by increases in CO2.
Nature | 2011
Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan G. Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert G. Drake; Allen H. Goldstein; Lianhong Gu; Gabriel G. Katul; Thomas E. Kolb; Beverly E. Law; Hank A. Margolis; Tilden P. Meyers; Russell K. Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf M. Staebler; Steven C. Wofsy; Lei Zhao
Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth’s surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models.