Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Y. Hui is active.

Publication


Featured researches published by David Y. Hui.


Journal of Clinical Investigation | 1989

A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve.

J K Boyles; C D Zoellner; L J Anderson; L M Kosik; Robert E. Pitas; K H Weisgraber; David Y. Hui; Robert W. Mahley; Peter J. Gebicke-Haerter; M. J. Ignatius

Recent work has demonstrated that apo E secretion and accumulation increase in the regenerating peripheral nerve. The fact that apoE, in conjunction with apoA-I and LDL receptors, participates in a well-established lipid transfer system raised the possibility that apoE is also involved in lipid transport in the injured nerve. In the present study of the crushed rat sciatic nerve, a combination of techniques was used to trace the cellular associations of apoE, apoA-I, and the LDL receptor during nerve repair and to determine the distribution of lipid at each stage. After a crush injury, as axons died and Schwann cells reabsorbed myelin, resident and monocyte-derived macrophages produced large quantities of apoE distal to the injury site. As axons regenerated in the first week, their tips contained a high concentration of LDL receptors. After axon regeneration, apoE and apoA-I began to accumulate distal to the injury site and macrophages became increasingly cholesterol-loaded. As remyelination began in the second and third weeks after injury, Schwann cells exhausted their cholesterol stores, then displayed increased LDL receptors. Depletion of macrophage cholesterol stores followed over the next several weeks. During this stage of regeneration, apoE and apoA-I were present in the extracellular matrix as components of cholesterol-rich lipoproteins. Our results demonstrate that the regenerating peripheral nerve possesses the components of a cholesterol transfer mechanism, and the sequence of events suggests that this mechanism supplies the cholesterol required for rapid membrane biogenesis during axon regeneration and remyelination.


Journal of Clinical Investigation | 2007

The central melanocortin system directly controls peripheral lipid metabolism

Ruben Nogueiras; Petra Wiedmer; Diego Perez-Tilve; Christelle Veyrat-Durebex; Julia M. Keogh; Gregory M. Sutton; Paul T. Pfluger; Tamara R. Castañeda; Susanne Neschen; Susanna M. Hofmann; Philip N. Howles; Donald A. Morgan; Stephen C. Benoit; Ildiko Szanto; Brigitte Schrott; Annette Schürmann; Hans-Georg Joost; Craig Hammond; David Y. Hui; Stephen C. Woods; Kamal Rahmouni; Andrew A. Butler; I. Sadaf Farooqi; Françoise Rohner-Jeanrenaud; Matthias H. Tschöp

Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.


Journal of Clinical Investigation | 1981

Two independent lipoprotein receptors on hepatic membranes of dog, swine, and man. Apo-B,E and apo-E receptors.

Robert W. Mahley; David Y. Hui; Thomas L. Innerarity; Karl H. Weisgraber

We have reported previously that canine livers possess two distinct lipoprotein receptors, an apoprotein (apo)-B,E receptor capable of binding the apo-B-containing low density lipoproteins (LDL) and the apo-E-containing cholesterol-induced high density lipoproteins (HDLc), and an apo-E receptor capable of binding apo-E HDLc but not LDL. Both the apo-B,E and apo-E receptors were found on the liver membranes obtained from immature growing dogs, but only the apo-E receptors were detected on th hepatic membranes of adult dogs. In this study, the expression of the apo-B,E receptors, as determined by canine LDL binding to the hepatic membranes, was found to be highly dependent on the age of the dog and decreased linearly with increasing age. Approximately 30 ng of LDL protein per milligram of membrane protein were bound via the apo-B,E receptors to the hepatic membranes of 7- to 8-wk-old immature dogs as compared with no detectable LDL binding in the hepatic membranes of adult dogs (greater than 1--1.5 yr of age). Results obtained by in vivo turnover studies of canine 125I-LDL correlated with the in vitro findings. In addition to a decrease in the expression of the hepatic apo-B,E receptors with age, these receptors were regulated, i.e., cholesterol feeding suppressed these receptors in immature dogs and prolonged fasting induced their expression in adult dogs. Previously, it was shown that the apo-B,E receptors were induced in adult livers following treatment with the hypocholesterolemic drug cholestyramine. In striking contrast, the apo-E receptors, as determined by apo-E HDLc binding, remained relatively constant for all ages of dogs studied (10--12 ng/mg). Moreover, the expression of the apo-E receptors was not strictly regulated by the metabolic perturbations that regulated the apo-B,E receptors. Similar results concerning the presence of apo-B,E and apo-E receptors were obtained in swine and in man. The hepatic membranes of adult swine bound only apo-E HDLc (apo-E receptors), whereas the membranes from fetal swine livers bound both LDL and apo-E HDLc (apo B,E and apo-E receptors). Furthermore, the membranes from adult human liver revealed the presence of the apo-E receptors as evidenced by the binding of 12--14 ng of HDLc protein per milligram of membrane protein and less than 1 ng of LDL protein per milligram. The membranes from the human liver also bound human chylomicron remnants and a subfraction of human HDL containing apo-E. These data suggest the importance of the E apoprotein and the apo-E receptors in mediating lipoprotein clearance, including chylomicron remnants, by the liver of adult dogs, swine, and man.


Journal of Clinical Investigation | 2010

Non-nuclear estrogen receptor α signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice

Ken L. Chambliss; Qian Wu; Sarah C. Oltmann; Eddy S. Konaniah; Michihisa Umetani; Kenneth S. Korach; Gail D. Thomas; Chieko Mineo; Ivan S. Yuhanna; Sung Hoon Kim; Zeynep Madak-Erdogan; Adriana Maggi; Sean P. Dineen; Christina L. Roland; David Y. Hui; Rolf A. Brekken; John A. Katzenellenbogen; Benita S. Katzenellenbogen; Philip W. Shaul

Steroid hormone receptors function classically in the nucleus as transcription factors. However, recent data indicate that there are also non-nuclear subpopulations of steroid hormone receptors, including estrogen receptors (ERs), that mediate membrane-initiated signaling of unclear basis and significance. Here we have shown that an estrogen-dendrimer conjugate (EDC) that is excluded from the nucleus stimulates endothelial cell proliferation and migration via ERalpha, direct ERalpha-Galphai interaction, and endothelial NOS (eNOS) activation. Analysis of mice carrying an estrogen response element luciferase reporter, ER-regulated genes in the mouse uterus, and eNOS enzyme activation further indicated that EDC specifically targets non-nuclear processes in vivo. In mice, estradiol and EDC equally stimulated carotid artery reendothelialization in an ERalpha- and G protein-dependent manner, and both agents attenuated the development of neointimal hyperplasia following endothelial injury. In contrast, endometrial carcinoma cell growth in vitro and uterine enlargement and MCF-7 cell breast cancer xenograft growth in vivo were stimulated by estradiol but not EDC. Thus, EDC is a non-nuclear selective ER modulator (SERM) in vivo, and in mice, non-nuclear ER signaling promotes cardiovascular protection. These processes potentially could be harnessed to provide vascular benefit without increasing the risk of uterine or breast cancer.


Journal of Clinical Investigation | 1990

Accumulation of apolipoprotein E-rich high density lipoproteins in hyperalphalipoproteinemic human subjects with plasma cholesteryl ester transfer protein deficiency.

Shizuya Yamashita; Dennis L. Sprecher; Naohiko Sakai; Yuji Matsuzawa; Seiichiro Tarui; David Y. Hui

This study characterized the plasma lipoproteins of familial hyperalphalipoproteinemic patients with or without deficiency of cholesteryl ester transfer protein (CETP) activity. The subjects with CETP deficiency have increased levels of apolipoprotein (apo) E. The increased concentration of apo E in these subjects was correlated to the appearance of apo E-rich high density lipoproteins (HDL). Sodium dodecyl sulfate-polyacrylamide gel analysis revealed that these lipoproteins contained predominantly the apo E (82%) and little amount of apo A-I (18%). These apo E-rich HDL displayed a much higher affinity than human LDL in binding to LDL receptors on human fibroblasts. Furthermore, 3.5 times fewer apo E-rich HDL than LDL were required to saturate the receptors on fibroblasts. These data indicated that the apo E-rich HDL in CETP-deficient human subjects contained multiple copies of apo E and bound to the LDL receptor through multiple interactions. The apo E-rich HDL, with similar properties as cholesterol-induced apo E HDLc, were not detectable in normal human subjects or in hyperalphalipoproteinemic subjects with normal CETP activity. The apo E-containing HDL in the latter subjects were smaller and contained only small amounts of apo E (14%). The difference in apo E-containing HDL in these subjects suggests a correlation between CETP level and the appearance of apo E-rich HDL.


Journal of Lipid Research | 2002

Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis

David Y. Hui; Philip N. Howles

Carboxyl ester lipase (CEL), previously named cholesterol esterase or bile salt-stimulated (or dependent) lipase, is a lipolytic enzyme capable of hydrolyzing cholesteryl esters, tri-, di-, and mono-acylglycerols, phospholipids, lysophospholipids, and ceramide. The active site catalytic triad of serine-histidine-aspartate is centrally located within the enzyme structure and is partially covered by a surface loop. The carboxyl terminus of the protein regulates enzymatic activity by forming hydrogen bonds with the surface loop to partially shield the active site. Bile salt binding to the loop domain frees the active site for accessibility by water-insoluble substrates. CEL is synthesized primarily in the pancreas and lactating mammary gland, but the enzyme is also expressed in liver, macrophages, and in the vessel wall. In the gastrointestinal tract, CEL serves as a compensatory protein to other lipolytic enzymes for complete digestion and absorption of lipid nutrients. Importantly, CEL also participates in chylomicron assembly and secretion, in a mechanism mediated through its ceramide hydrolytic activity. Cell culture studies suggest a role for CEL in lipoprotein metabolism and oxidized LDL-induced atherosclerosis. Thus, this enzyme, which has a wide substrate reactivity and diffuse anatomic distribution, may have multiple functions in lipid and lipoprotein metabolism, and atherosclerosis.


Journal of Biological Chemistry | 1998

Apolipoprotein E Inhibits Platelet-derived Growth Factor-induced Vascular Smooth Muscle Cell Migration and Proliferation by Suppressing Signal Transduction and Preventing Cell Entry to G1 Phase

Masato Ishigami; Debi K. Swertfeger; Norman A. Granholm; David Y. Hui

The anti-atherogenic effects of apolipoprotein (apo) E have been attributed to its ability to reduce plasma cholesterol level and to limit foam cell formation. The purpose of this study was to ascertain if apoE also may have cytostatic functions that could attenuate vascular occlusive diseases. Purified apoE inhibited smooth muscle cell migration directed to platelet-derived growth factor (PDGF) or oxidized LDL (oxLDL) (p < 0.0001). The purified apoE also suppressed PDGF- and oxLDL-induced smooth muscle cell proliferation (p < 0.001). These apoE inhibitory effects were not because of suppression of PDGF binding to its receptors on the smooth muscle cells, but was correlated with a significant reduction in agonist-stimulated mitogen-activated protein kinase activity (p < 0.01). ApoE also inhibited PDGF-induced cyclin D1 mRNA expression, suggesting that the apoE effect was mediated by growth arrest at the G0 to G1 phase. Taken together, these results suggest that apoE has cytostatic functions in the vessel wall and may protect against vascular diseases through inhibition of cell signaling events associated with growth factor-induced smooth muscle cell migration and proliferation.


Journal of Clinical Investigation | 2007

Adipocyte LDL receptor–related protein–1 expression modulates postprandial lipid transport and glucose homeostasis in mice

Susanna M. Hofmann; Li Zhou; Diego Perez-Tilve; Todd M. Greer; Erin Grant; Lauren Wancata; Andrew Thomas; Paul T. Pfluger; Joshua E. Basford; Dean Gilham; Joachim Herz; Matthias H. Tschöp; David Y. Hui

Diet-induced obesity and its serious consequences such as diabetes, cardiovascular disease, and cancer are rapidly becoming a major global health threat. Therefore, understanding the cellular and molecular mechanisms by which dietary fat causes obesity and diabetes is of paramount importance in order to identify preventive and therapeutic strategies. Increased dietary fat intake results in high plasma levels of triglyceride-rich lipoproteins (TGRL). Tissue uptake of TGRL has been shown to promote glucose intolerance. We generated mice with an adipocyte-specific inactivation of the multifunctional receptor LDL receptor-related protein-1 (LRP1) to determine its role in mediating the effects of TGRL on diet-induced obesity and diabetes. Knockout mice displayed delayed postprandial lipid clearance, reduced body weight, smaller fat stores, lipid-depleted brown adipocytes, improved glucose tolerance, and elevated energy expenditure due to enhanced muscle thermogenesis. We further demonstrated that inactivation of adipocyte LRP1 resulted in resistance to dietary fat-induced obesity and glucose intolerance. These findings identify LRP1 as a critical regulator of adipocyte energy homeostasis, where functional disruption leads to reduced lipid transport, increased insulin sensitivity, and muscular energy expenditure.


Journal of Biological Chemistry | 2002

The Role of Apolipoprotein A-I Helix 10 in Apolipoprotein-mediated Cholesterol Efflux via the ATP-binding Cassette Transporter ABCA1*

Stacey E. Panagotopulos; Scott R. Witting; Erica M. Horace; David Y. Hui; J. Nicholas Maiorano; W. Sean Davidson

Recent studies of Tangier disease have shown that the ATP-binding cassette transporter A1 (ABCA1)/apolipoprotein A-I (apoA-I) interaction is critical for high density lipoprotein particle formation, apoA-I integrity, and proper reverse cholesterol transport. However, the specifics of this interaction are unknown. It has been suggested that amphipathic helices of apoA-I bind to a lipid domain created by the ABCA1 transporter. Alternatively, apoA-I may bind directly to ABCA1 itself. To better understand this interaction, we created several truncation mutants of apoA-I and then followed up with more specific point mutants and helix translocation mutants to identify and characterize the locations of apoA-I required for ABCA1-mediated cholesterol efflux. We found that deletion of residues 221–243 (helix 10) abolished ABCA1-mediated cholesterol efflux from cultured RAW mouse macrophages treated with 8-bromo-cAMP. Point mutations in helix 10 that affected the helical charge distribution reduced ABCA1-mediated cholesterol effluxversus the wild type. We noted a strong positive correlation between cholesterol efflux and the lipid binding characteristics of apoA-I when mutations were made in helix 10. However, there was no such correlation for helix translocations in other areas of the protein as long as helix 10 remained intact at the C terminus. From these observations, we propose an alternative model for apolipoprotein-mediated efflux.


Circulation Research | 2007

Triglyceride-Rich Lipoproteins Prime Aortic Endothelium for an Enhanced Inflammatory Response to Tumor Necrosis Factor-α

Harold J. Ting; James P. Stice; Ulrich Y. Schaff; David Y. Hui; John C. Rutledge; Anne A. Knowlton; Anthony G. Passerini; Scott I. Simon

High levels of triglyceride-rich lipoproteins (TGRLs) in blood are linked to development of atherosclerosis, yet the mechanisms by which these particles initiate inflammation of endothelium are unknown. TGRL isolated from human plasma during the postprandial state was examined for its capacity to bind to cultured human aortic endothelial cells (HAECs) and alter the acute inflammatory response to tumor necrosis factor-α. HAECs were repetitively incubated with dietary levels of freshly isolated TGRL for 2 hours per day for 1 to 3 days to mimic postprandial lipidemia. TGRL induced membrane upregulation of the low-density lipoprotein family receptors LRP and LR11, which was inhibited by the low-density lipoprotein receptor–associated protein-1. TGRLs alone did not elicit inflammation in HAECs but enhanced the inflammatory response via a 10-fold increase in sensitivity to cytokine stimulation. This was reflected by increased mitogen-activated protein kinase activation, nuclear translocation of NF-&kgr;B, amplified expression of endothelial selectin and VCAM-1, and a subsequent increase in monocyte-specific recruitment under shear flow as quantified in a microfabricated vascular mimetic device.

Collaboration


Dive into the David Y. Hui's collaboration.

Top Co-Authors

Avatar

Eduardo Bruera

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip N. Howles

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Kuhel

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Eddy S. Konaniah

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Patrick Tso

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minjeong Park

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge