Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eddy S. Konaniah is active.

Publication


Featured researches published by Eddy S. Konaniah.


Journal of Clinical Investigation | 2010

Non-nuclear estrogen receptor α signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice

Ken L. Chambliss; Qian Wu; Sarah C. Oltmann; Eddy S. Konaniah; Michihisa Umetani; Kenneth S. Korach; Gail D. Thomas; Chieko Mineo; Ivan S. Yuhanna; Sung Hoon Kim; Zeynep Madak-Erdogan; Adriana Maggi; Sean P. Dineen; Christina L. Roland; David Y. Hui; Rolf A. Brekken; John A. Katzenellenbogen; Benita S. Katzenellenbogen; Philip W. Shaul

Steroid hormone receptors function classically in the nucleus as transcription factors. However, recent data indicate that there are also non-nuclear subpopulations of steroid hormone receptors, including estrogen receptors (ERs), that mediate membrane-initiated signaling of unclear basis and significance. Here we have shown that an estrogen-dendrimer conjugate (EDC) that is excluded from the nucleus stimulates endothelial cell proliferation and migration via ERalpha, direct ERalpha-Galphai interaction, and endothelial NOS (eNOS) activation. Analysis of mice carrying an estrogen response element luciferase reporter, ER-regulated genes in the mouse uterus, and eNOS enzyme activation further indicated that EDC specifically targets non-nuclear processes in vivo. In mice, estradiol and EDC equally stimulated carotid artery reendothelialization in an ERalpha- and G protein-dependent manner, and both agents attenuated the development of neointimal hyperplasia following endothelial injury. In contrast, endometrial carcinoma cell growth in vitro and uterine enlargement and MCF-7 cell breast cancer xenograft growth in vivo were stimulated by estradiol but not EDC. Thus, EDC is a non-nuclear selective ER modulator (SERM) in vivo, and in mice, non-nuclear ER signaling promotes cardiovascular protection. These processes potentially could be harnessed to provide vascular benefit without increasing the risk of uterine or breast cancer.


Circulation Research | 2012

Myeloid-Specific Krüppel-Like Factor 2 Inactivation Increases Macrophage and Neutrophil Adhesion and Promotes Atherosclerosis

Jerry B. Lingrel; Robyn Pilcher-Roberts; Joshua E. Basford; Palanikumar Manoharan; Jon C. Neumann; Eddy S. Konaniah; Ramprasad Srinivasan; Vladimir Y. Bogdanov; David Y. Hui

Rationale: Hemizygous deficiency of the transcription factor Krüppel-like factor 2 (KLF2) has been shown previously to augment atherosclerosis in hypercholesterolemic mice. However, the cell type responsible for the increased atherosclerosis due to KLF2 deficiency has not been identified. This study examined the consequence of myeloid cell-specific KLF2 inactivation in atherosclerosis. Methods and Results: Cell-specific knockout mice were generated by Cre/loxP recombination. Macrophages isolated from myeloid-specific Klf2 knockout (myeKlf2−/−) mice were similar to myeKlf2+/+ macrophages in response to activation, polarization, and lipid accumulation. However, in comparison to myeKlf2+/+ macrophages, myeKlf2−/− macrophages adhered more robustly to endothelial cells. Neutrophils from myeKlf2−/− mice also adhered more robustly to endothelial cells, and fewer myeKlf2−/− neutrophils survived in culture over a 24-hour period in comparison with myeKlf2+/+ neutrophils. When myeKlf2−/− mice were mated to Ldlr−/− mice and then fed a high fat and high cholesterol diet, significant increase in atherosclerosis was observed in the myeKlf2−/−Ldlr−/− mice compared with myeKlf2+/+Ldlr−/− littermates. The increased atherosclerosis in myeKlf2−/−Ldlr−/− mice was associated with elevated presence of neutrophils and macrophages, with corresponding increase of myeloperoxidase as well as chlorinated and nitrosylated tyrosine epitopes in their lesion areas compared with myeKlf2+/+Ldlr−/− mice. Conclusions: This study documents a role for myeloid KLF2 expression in modulating atherosclerosis. The increased neutrophil accumulation and atherosclerosis progression with myeloid-specific KLF2 deficiency also underscores the importance of neutrophils in promoting vascular oxidative stress and atherosclerosis. Collectively, these results suggest that elevating KLF2 expression may be a novel strategy for prevention and treatment of atherosclerosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1.

David Manka; Tapan K. Chatterjee; Lynn L. Stoll; Joshua E. Basford; Eddy S. Konaniah; Ramprasad Srinivasan; Vladimir Y. Bogdanov; Yaoliang Tang; Andra L. Blomkalns; David Y. Hui; Neal L. Weintraub

Objective— Perivascular adipose tissue (PVAT) expands during obesity, is highly inflamed, and correlates with coronary plaque burden and increased cardiovascular risk. We tested the hypothesis that PVAT contributes to the vascular response to wire injury and investigated the underlying mechanisms. Approach and Results— We transplanted thoracic aortic PVAT from donor mice fed a high-fat diet to the carotid arteries of recipient high-fat diet–fed low-density lipoprotein receptor knockout mice. Two weeks after transplantation, wire injury was performed, and animals were euthanized 2 weeks later. Immunohistochemistry was performed to quantify adventitial macrophage infiltration and neovascularization and neointimal lesion composition and size. Transplanted PVAT accelerated neointimal hyperplasia, adventitial macrophage infiltration, and adventitial angiogenesis. The majority of neointimal cells in PVAT-transplanted animals expressed &agr;-smooth muscle actin, consistent with smooth muscle phenotype. Deletion of monocyte chemoattractant protein-1 in PVAT substantially attenuated the effects of fat transplantation on neointimal hyperplasia and adventitial angiogenesis, but not adventitial macrophage infiltration. Conditioned medium from perivascular adipocytes induced potent monocyte chemotaxis in vitro and angiogenic responses in cultured endothelial cells. Conclusions— These findings indicate that PVAT contributes to the vascular response to wire injury, in part through monocyte chemoattractant protein-1–dependent mechanisms.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Transplanted Perivascular Adipose Tissue Accelerates Injury-Induced Neointimal Hyperplasia

David Manka; Tapan K. Chatterjee; Lynn L. Stoll; Joshua E. Basford; Eddy S. Konaniah; Ramprasad Srinivasan; Vladimir Y. Bogdanov; Yaoliang Tang; Andra L. Blomkalns; David Y. Hui; Neal L. Weintraub

Objective— Perivascular adipose tissue (PVAT) expands during obesity, is highly inflamed, and correlates with coronary plaque burden and increased cardiovascular risk. We tested the hypothesis that PVAT contributes to the vascular response to wire injury and investigated the underlying mechanisms. Approach and Results— We transplanted thoracic aortic PVAT from donor mice fed a high-fat diet to the carotid arteries of recipient high-fat diet–fed low-density lipoprotein receptor knockout mice. Two weeks after transplantation, wire injury was performed, and animals were euthanized 2 weeks later. Immunohistochemistry was performed to quantify adventitial macrophage infiltration and neovascularization and neointimal lesion composition and size. Transplanted PVAT accelerated neointimal hyperplasia, adventitial macrophage infiltration, and adventitial angiogenesis. The majority of neointimal cells in PVAT-transplanted animals expressed &agr;-smooth muscle actin, consistent with smooth muscle phenotype. Deletion of monocyte chemoattractant protein-1 in PVAT substantially attenuated the effects of fat transplantation on neointimal hyperplasia and adventitial angiogenesis, but not adventitial macrophage infiltration. Conditioned medium from perivascular adipocytes induced potent monocyte chemotaxis in vitro and angiogenic responses in cultured endothelial cells. Conclusions— These findings indicate that PVAT contributes to the vascular response to wire injury, in part through monocyte chemoattractant protein-1–dependent mechanisms.


Diabetes | 2013

Apolipoprotein E2 Accentuates Postprandial Inflammation and Diet-Induced Obesity to Promote Hyperinsulinemia in Mice

David G. Kuhel; Eddy S. Konaniah; Joshua E. Basford; Courtney McVey; Colleen Goodin; Tapan K. Chatterjee; Neal L. Weintraub; David Y. Hui

Genetic studies have revealed the association between the ε2 allele of the apolipoprotein E (apoE) gene and greater risk of metabolic diseases. This study compared C57BL/6 mice in which the endogenous mouse gene has been replaced by the human APOE2 or APOE3 gene (APOE2 and APOE3 mice) to identify the mechanism underlying the relationship between ε2 and obesity and diabetes. In comparison with APOE3 mice, the APOE2 mice had elevated fasting plasma lipid and insulin levels and displayed prolonged postprandial hyperlipidemia accompanied by increased granulocyte number and inflammation 2 h after being fed a lipid-rich meal. In comparison with APOE3 mice, the APOE2 mice also showed increased adiposity when maintained on a Western-type, high-fat, high-cholesterol diet. Adipose tissue dysfunction with increased macrophage infiltration, abundant crown-like structures, and inflammation were also observed in adipose tissues of APOE2 mice. The severe adipocyte dysfunction and tissue inflammation corresponded with the robust hyperinsulinemia observed in APOE2 mice after being fed the Western-type diet. Taken together, these data showed that impaired plasma clearance of apoE2-containing, triglyceride-rich lipoproteins promotes lipid redistribution to neutrophils and adipocytes to accentuate inflammation and adiposity, thereby accelerating the development of hyperinsulinemia that will ultimately lead to advanced metabolic diseases.


Atherosclerosis | 2014

Group 1B phospholipase A2 inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice

Norris I. Hollie; Eddy S. Konaniah; Colleen Goodin; David Y. Hui

OBJECTIVE Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. METHODS AND RESULTS The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. CONCLUSION The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Genetic variants of ApoE and ApoER2 differentially modulate endothelial function

Victoria Ulrich; Eddy S. Konaniah; Joachim Herz; Robert D. Gerard; Eunjeong Jung; Ivan S. Yuhanna; Mohamed Ahmed; David Y. Hui; Chieko Mineo; Philip W. Shaul

Significance Why genetic variants of the circulating protein apolipoprotein E (apoE) or its receptor apoliprotein E receptor 2 (ApoER2) confer greater cardiovascular disease risk is poorly understood. We report that in endothelial cells, which are the guardian cells of the vascular wall, the most common form of apoE, apoE3, activates ApoER2 to favorably impact endothelial function. The risk-enhancing apoE variant apoE4 lacks this capacity and instead inhibits apoE3–ApoER2 action, and a risk-conferring ApoER2 variant is nonfunctional in endothelium. Evidence is obtained in mice that the genetic variants adversely impact endothelial repair and related vascular disease severity. From these discoveries personalized treatment strategies may be developed to protect individuals with risk-altering apoE or ApoER2 variants, which comprise approximately 15% of the population. It is poorly understood why there is greater cardiovascular disease risk associated with the apolipoprotein E4 (apoE) allele vs. apoE3, and also greater risk with the LRP8/apolipoprotein E receptor 2 (ApoER2) variant ApoER2-R952Q. Little is known about the function of the apoE–ApoER2 tandem outside of the central nervous system. We now report that in endothelial cells apoE3 binding to ApoER2 stimulates endothelial NO synthase (eNOS) and endothelial cell migration, and it also attenuates monocyte–endothelial cell adhesion. However, apoE4 does not stimulate eNOS or endothelial cell migration or dampen cell adhesion, and alternatively it selectively antagonizes apoE3/ApoER2 actions. The contrasting endothelial actions of apoE4 vs. apoE3 require the N-terminal to C-terminal interaction in apoE4 that distinguishes it structurally from apoE3. Reconstitution experiments further reveal that ApoER2-R952Q is a loss-of-function variant of the receptor in endothelium. Carotid artery reendothelialization is decreased in ApoER2−/− mice, and whereas adenoviral-driven apoE3 expression in wild-type mice has no effect, apoE4 impairs reendothelialization. Moreover, in a model of neointima formation invoked by carotid artery endothelial denudation, ApoER2−/− mice display exaggerated neointima development. Thus, the apoE3/ApoER2 tandem promotes endothelial NO production, endothelial repair, and endothelial anti-inflammatory properties, and it prevents neointima formation. In contrast, apoE4 and ApoER2-R952Q display dominant-negative action and loss of function, respectively. Thus, genetic variants of apoE and ApoER2 impact cardiovascular health by differentially modulating endothelial function.


Journal of Lipid Research | 2010

Participation of ATP7A in macrophage mediated oxidation of LDL

Zhenyu Qin; Eddy S. Konaniah; Bonnie Neltner; Raphael A. Nemenoff; David Y. Hui; Neal L. Weintraub

ATP7A primarily functions to egress copper from cells, thereby supplying this cofactor to secreted copper-accepting enzymes. This ATPase has attracted significant attention since the discovery of its mutation leading to human Menkes disease and the demonstration of its distribution in various tissues. Recently, we reported that ATP7A is expressed in the human vasculature. In the present study, we investigated the cellular expression of ATP7A in atherosclerotic lesions of LDL receptor −/− mice. Subsequently, we examined the role of ATP7A in regulating the oxidation of LDL in a macrophage cell model. We observed that ATP7A is expressed in atherosclerotic murine aorta and colocalizes with macrophages. To investigate the function of ATP7A, we downregulated ATP7A expression in THP-1 derived macrophages using small interfering RNA (siRNA). ATP7A downregulation attenuated cell-mediated oxidation of LDL. Moreover, downregulation of ATP7A resulted in decreased expression and enzymatic activity of cytosolic phospholipase A2 α (cPLA2α), a key intracellular enzyme involved in cell-mediated LDL oxidation. In addition, cPLA2α promoter activity was decreased after downregulation of ATP7A, suggesting that ATP7A transcriptionally regulates cPLA2α expression. Finally, cPLA2α overexpression increased LDL oxidation, which was blocked by coadministration of ATP7A siRNA oligonucleotides. These findings suggest a novel mechanism linking ATP7A to cPLA2α and LDL oxidation, suggesting that this copper transporter could play a previously unrecognized role in the pathogenesis of atherosclerosis.


Journal of the American Heart Association | 2017

Bilirubin Prevents Atherosclerotic Lesion Formation in Low‐Density Lipoprotein Receptor‐Deficient Mice by Inhibiting Endothelial VCAM‐1 and ICAM‐1 Signaling

Megan E. Vogel; Gila Idelman; Eddy S. Konaniah; Stephen D. Zucker

Background Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low‐density lipoprotein receptor‐deficient (Ldlr −/−) mice and elucidate the molecular processes underlying this effect. Methods and Results Bilirubin, at physiological concentrations (≤20 μmol/L), dose‐dependently inhibits THP‐1 monocyte migration across tumor necrosis factor α–activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross‐linking of endothelial vascular cell adhesion molecule 1 (VCAM‐1) or intercellular adhesion molecule 1 (ICAM‐1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM‐1 and ICAM‐1 signaling. When administered to Ldlr −/− mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin‐treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM‐1 or ICAM‐1 expression. Conclusions Bilirubin suppresses atherosclerotic plaque formation in Ldlr −/− mice by disrupting endothelial VCAM‐1‐ and ICAM‐1‐mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin.


Journal of the American Heart Association | 2014

Antiphospholipid Antibodies Attenuate Endothelial Repair and Promote Neointima Formation in Mice

Victoria Ulrich; Eddy S. Konaniah; Wan Ru Lee; Sadiksha Khadka; Yu Min Shen; Joachim Herz; Jane E. Salmon; David Y. Hui; Philip W. Shaul; Chieko Mineo

Background Antiphospholipid syndrome patients have antiphospholipid antibodies (aPLs) that promote thrombosis, and they have increased cardiovascular disease risk. Although the basis for the thrombosis has been well delineated, it is not known why antiphospholipid syndrome patients also have an increased prevalence of nonthrombotic vascular occlusion. The aims of this work were to determine if aPLs directly promote medial hypertrophy or neointima formation in mice and to identify the underlying mechanisms. Methods and Results Medial hypertrophy and neointima formation invoked by carotid artery endothelial denudation were evaluated in mice administered normal human IgG or aPLs. While aPLs had no effect on medial hypertrophy, they caused exaggerated neointima development. This was related to an aPL‐induced impairment in reendothelialization post denudation, and scratch assays in cell culture revealed that there are direct effects of aPLs on endothelium that retard cell migration. Further experiments showed that aPL antagonism of endothelial migration and repair is mediated by antibody recognition of β2‐glycoprotein I, apolipoprotein E receptor 2, and a decline in bioavailable NO. Consistent with these mechanisms, the adverse impacts of aPLs on reendothelialization and neointima formation were fully prevented by the NO donor molsidomine. Conclusions APLs blunt endothelial repair, and there is related aPL‐induced exaggeration in neointima formation after endothelial injury in mice. The initiating process entails NO deficiency mediated by β2‐glycoprotein I recognition by aPLs and apolipoprotein E receptor 2. The modulation of endothelial apolipoprotein E receptor 2 function or NO bioavailability may represent new interventions to prevent the nonthrombotic vascular occlusion and resulting cardiovascular disorders that afflict antiphospholipid syndrome patients.

Collaboration


Dive into the Eddy S. Konaniah's collaboration.

Top Co-Authors

Avatar

David Y. Hui

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramprasad Srinivasan

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir Y. Bogdanov

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Kuhel

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

David Manka

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge