Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Campanella is active.

Publication


Featured researches published by Davide Campanella.


Science and Technology of Welding and Joining | 2013

On tool stirring action in friction stir welding of work hardenable aluminium alloys

Gianluca Buffa; Davide Campanella; Livan Fratini

Abstract In the paper solid state bonding conditions obtained in friction stir welding (FSW) of AA5754-H111 butt joints are analysed, considering the so called zigzag line in the transverse section of the joints. A wide experimental campaign was carried out varying both tool advancing speed and tool rotational one. The effects of the process on the mechanical properties of the joint were highlighted and micro- and macro-observations were used in order to explain the reasons of the enhanced mechanical properties found for the welded material. Numerical results derived from a FEM model previously developed by the authors were utilised to point out the different mechanical and metallurgical behavior of the obtained joints.


Key Engineering Materials | 2015

Experimental Comparison of the MIG and Friction Stir Welding Processes for AA 6005 Aluminium Alloy

Serafino Caruso; Davide Campanella; Sebastiano Candamano; Claudia Varrese; F. Crea; L. Filice; D. Umbrello

In this study, the mechanical properties of welded joints of AA 6005 aluminum alloy obtained with friction stir welding (FSW) and conventional metal inert gas welding (MIG) are studied. FSW welds were carried out on a semi-automatic milling machine. The performance of FSW and MIG welded joints were identified using tensile and bending impact tests, as far as the environmental aspects are also included in the discussion. The joints obtained with FSW and MIG processes were also investigated in their microstructure. The results indicate that, the microstructure of the friction stir weld is different from that of MIG welded joint. The weld nugget consists of small grains in FSW than those found in MIG weld. Taking into consideration the process conditions and requirements, FSW and MIG processes were also compared with each other to understand the advantages and disadvantages of the processes for welding applications of studied Al alloy. Better tensile and bending strength were obtained with FSW welded joints.


Key Engineering Materials | 2014

Experimental and Numerical Study on Linear Friction Welding of AA2011 Aluminum Alloy

Gianluca Buffa; Davide Campanella; Antonello D'Annibale; Antoniomaria Di Ilio; Livan Fratini

Linear Friction Welding (LFW) is a solid-state joining process used for non-axisymmetric components. LFW involves joining of materials through the relative motion of two components undergoing an axial force. In the process, the heat source is given by the frictional forces work decaying into heat and determining a local softening of the material and eventually the needed bonding conditions. In the paper, an experimental and numerical campaign is proposed for AA2011 aluminum alloys welding. Different case studies are considered with fixed oscillation frequency and varying pressure at the interface between the specimens. Constant oscillation amplitude and specimens geometry is used. The calculated results permitted to highlight the effects of the process parameters on the material flow determining the soundness of the weld.


Key Engineering Materials | 2013

Modelling Aspects in Accumulative Roll Bonding Process by Explicit Finite Element Analysis

Livan Fratini; Davide Campanella; Marion Merklein; Wolfgang Boehm

Accumulative Roll-Bonding (ARB) process is a severe plastic deformation (SPD) process, capable of developing grains below 1 μm in diameter and improving mechanical properties of the material. In this study, the authors compared two different FE-codes with respect of its applicability for numerical analysis of the ARB process. Modelling this process was achieved using the explicit code for Abaqus/CAE both in 2D and 3D. The proposed model was used to assess the impact of ARB cycles on the final material properties. The numerical results in 2D and 3D were compared and contrasted. The research work presented in this paper is focused on the simulation optimization based on CPU time minimization. The numerical simulations were also validated through a comparison with the experimental results.


PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience | 2017

Comparison between FSW and bonded lap joints - A preliminary investigation

Enrico Lertora; Davide Campanella; Chiara Mandolfino; Carla Gambaro; Livan Fratini; Gianluca Buffa

Difficult to weld aluminium alloys can be effectively joined by different alternative processes. Friction Stir Welding (FSW), among the solid-state processes and adhesive bonding represent two very attractive techniques. They allow the production of highly resistant joints avoiding the formation of the typical fusion weld defects. The aim of this work is to identify, analyse and compare the mechanical properties of AA6016 aluminium alloy joints made out of 1 mm thick sheets. FSW lap joints were and epoxy bonded joints were produced. Using the FSW results as benchmark, the overlap required in the bonded joint was identified to ensure the same static strength. Once the geometric configurations of the joints are known, the static and dynamic resistance of welds and bonding have been compared.


Key Engineering Materials | 2013

Improving Formability in SPIF Processes through High Speed Rotating Tool: Experimental and Numerical Analysis

Gianluca Buffa; Davide Campanella; Rossano Mirabile; Livan Fratini

Single-point incremental forming (SPIF) is a quite new sheet-forming process which offers the possibility to deform complex parts without dedicated dies using a single-point tool and a standard three-axis CNC machine. Although the process mechanics enables higher strains with respect to traditional sheet-forming processes, research has been focused on further increasing the maximum forming angle. In the paper, a new approach is used to enhance the material formability through a localized sheet heating as a consequence of the friction work caused by high speed rotating tool. Numerical simulation was utilized to relate the effect of temperature with the main field variables distribution in the sheet.


Science and Technology of Welding and Joining | 2018

Single block 3D numerical model for linear friction welding of titanium alloy

Dario Baffari; Gianluca Buffa; Davide Campanella; Livan Fratini; Fabrizio Micari

ABSTRACT A two-stage approach for the simulation of Linear Friction Welding is presented. The proposed model, developed using the commercial simulation package DEFORM, is 3D Lagrangian, thermo-mechanically coupled. The first phase of the process was modelled with two distinct workpieces, while the remaining phases were simulated using a single-block model. The Piwnik–Plata criterion was set up and used to determine the shifting from the dual object to the single-block model. The model, validated against experimental temperature measurements, is able to predict the main field variables distributions with varying process parameters. Titanium alpha and beta phases evolution during the whole process has been predicted and the obtained results have been correlated to the experimentally measured micro-mechanical properties of the joints.


AIP Conference Proceedings | 2018

Welding abilities of UFG metals

Łukasz Morawiński; Tomasz Chmielewski; Lech Olejnik; Gianluca Buffa; Davide Campanella; Livan Fratini

Ultrafine Grained (UFG) metals are characterized by an average grain size of <1 µm and mostly high angle grain boundaries. These materials exhibit exceptional improvements in strength, superplastic behaviour and in some cases enhanced biocompatibility. UFG metals barstock can be fabricated effectively by means of Severe Plastic Deformation (SPD) methods. However, the obtained welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovative welding processes based on mixing of the friction-heated material in the solid state. LFW is a welding process used to joint bulk components. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. Character and range of recrystallization can be controlled by changing LFW parameters. Experimental study on the welded UFG 1070 aluminum alloy by means of FLW method, indicates the possibility of reducing the UFG structure degradation in the obtained joint. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency.Ultrafine Grained (UFG) metals are characterized by an average grain size of <1 µm and mostly high angle grain boundaries. These materials exhibit exceptional improvements in strength, superplastic behaviour and in some cases enhanced biocompatibility. UFG metals barstock can be fabricated effectively by means of Severe Plastic Deformation (SPD) methods. However, the obtained welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovat...


PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience | 2017

In-process tool rotational speed variation with constant heat input in friction stir welding of AZ31 sheets with variable thickness

Gianluca Buffa; Davide Campanella; Archimede Forcellese; Livan Fratini; Michela Simoncini

In the present work, friction stir welding experiments on AZ31 magnesium alloy sheets, characterized by a variable thickness along the welding line, were carried out. The approach adapted during welding consisted in maintaining constant the heat input to the joint. To this purpose, the rotational speed of the pin tool was increased with decreasing thickness and decreased with increasing thickness in order to obtain the same temperatures during welding. The amount by which the rotational speed was changed as a function of the sheet thickness was defined on the basis of the results given by FEM simulations of the FSW process. Finally, the effect of the in-process variation of the tool rotational speed on the mechanical and microstructural properties of FSWed joints was analysed by comparing both the nominal stress vs. nominal strain curves and microstructure of FSWed joints obtained in different process conditions. It was observed that FSW performed by keeping constant the heat input to the joint leads to almost coincident results both in terms of the curve shape, ultimate tensile strength and ultimate elongation values, and microstructure.


ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming | 2016

Dissimilar Al/steel friction stir welding lap joints for automotive applications

Livan Fratini; Gianluca Buffa; Davide Campanella; P. Russo Spena

A widespread usage of aluminum alloys for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Dissimilar welding of aluminum alloys and steel grades poses some issues concerning the formation of brittle intermetallic compounds, difference in physical and chemical properties of the parent metals, and poor wetting behavior of aluminum. Friction stir welding is considered to be a reasonable solution to obtain sound aluminum/steel joints. A study on the join quality of dissimilar lap joints of steel and aluminum alloy sheets after friction stir welding is proposed here. A low carbon steel is joined with AA6016 aluminum alloy to study preliminarily the feasibility to assembly car-body parts. The joints, welded with tool rotation and feed rate varying in a wide range, have been studied from a visual examination and microstructural point of view. Optical microscopy has been used to char...

Collaboration


Dive into the Davide Campanella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Micari

University of Palermo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge