Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Demurtas is active.

Publication


Featured researches published by Davide Demurtas.


Molecular Pharmaceutics | 2008

PEG-b-PPS Diblock Copolymer Aggregates for Hydrophobic Drug Solubilization and Release: Cyclosporin A as an Example

Diana Velluto; Davide Demurtas; Jeffrey A. Hubbell

Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block.


Langmuir | 2009

A Novel Method for the Encapsulation of Biomolecules into Polymersomes via Direct Hydration

Conlin P. O'Neil; Tomoake Suzuki; Davide Demurtas; Andrija Finka; Jeffrey A. Hubbell

One of the major engineering challenges for the implementation of block copolymer vesicles, or polymersomes, as therapeutic drug carriers is obtaining high encapsulation efficiencies for biomolecules. Here we present a novel method for encapsulation of proteins with high encapsulation efficiency within polymersomes formed from block copolymers of poly(ethylene glycol)-bl-poly(propylene sulfide). By formulation of the neat block copolymer with a low molecular weight poly(ethylene glycol), direct hydration of the formulated mixture yielded polymersomes. We were able to achieve encapsulation efficiencies for ovalbumin at 37%, bovine serum albumin at 19%, and bovine gamma-globulin at 15% when the proteins were included in the hydration solution. The formulation process and the dispersion of polymersomes from the preparation in phosphate-buffered saline were characterized using confocal microscopy, cryogenic transmission electron microscopy, and fluorimetry. We were also successful in the encapsulation of proteinase K, a proteolytic enzyme, and demonstrated by SDS-PAGE that the enzyme was contained inside polymersomes when dispersed in a solution of ovalbumin.


Current Biology | 2013

Native Architecture of the Centriole Proximal Region Reveals Features Underlying Its 9-Fold Radial Symmetry

Paul Guichard; Virginie Hachet; Norbert Majubu; Aitana Neves; Davide Demurtas; Natacha Olieric; Isabelle Flückiger; Akinori Yamada; Kumiko Kihara; Yuichiro Nishida; Shigeharu Moriya; Michel O. Steinmetz; Yuichi Hongoh; Pierre Gönczy

BACKGROUND Centrioles are cylindrical microtubule-based structures whose assembly is critical for the formation of cilia, flagella, and centrosomes. The centriole proximal region harbors a cartwheel that dictates the 9-fold symmetry of centrioles. Although the cartwheel architecture has been recently analyzed, how it connects to the peripheral microtubules is not understood. More generally, a high-resolution view of the proximal region of the centriole is lacking, thus limiting understanding of the underlying assembly mechanisms. RESULTS We report the complete architecture of the Trichonympha centriole proximal region using cryotomography. The resulting 3D map reveals several features, including additional densities in the cartwheel that exhibit a 9-fold symmetrical arrangement, as well as the structure of the Pinhead and the A-C linker that connect to microtubules. Moreover, we uncover striking chiral features that might impart directionality to the entire centriole. Furthermore, we identify Trichonympha SAS-6 and demonstrate that it localizes to the cartwheel in vivo. CONCLUSIONS Our work provides unprecedented insight into the architecture of the centriole proximal region, which is key for a thorough understanding of the mechanisms governing centriole assembly.


Soft Matter | 2009

Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant 1-hexadecyl-3-vinyl-imidazolium bromide in aqueous solution

Antonello Di Crescenzo; Davide Demurtas; Andrea Renzetti; Gabriella Siani; Paolo De Maria; Moreno Meneghetti; Maurizio Prato; Antonella Fontana

Stable homogeneous aqueous dispersions of pristine single-walled carbon nanotubes (SWNTs) are obtained by using a water-soluble long-chain imidazolium ionic liquid (hvimBr) above its critical micelle concentration. The amount of hivmBr and the sonication time are two essential factors to obtain a good dispersion. The effective concentration of exfoliated SWNTs in aqueous solution is determined by simple, convenient and rapid UV-visible spectrophotometric measurements.


ACS Nano | 2014

Insertion of Nanoparticle Clusters into Vesicle Bilayers

Cécile Bonnaud; Christophe A. Monnier; Davide Demurtas; Corinne Jud; Dimitri Vanhecke; Xavier Montet; Ruud Hovius; Marco Lattuada; Barbara Rothen-Rutishauser; Alke Petri-Fink

A major contemporary concern in developing effective liposome-nanoparticle hybrids is the present inclusion size limitation of nanoparticles between vesicle bilayers, which is considered to be around 6.5 nm in diameter. In this article, we present experimental observations backed by theoretical considerations which show that greater structures can be incorporated within vesicle membranes by promoting the clustering of nanoparticles before liposome formation. Cryo-transmission electron microscopy and cryo-electron tomography confirm these observations at unprecedented detail and underpin that the liposome membranes can accommodate flexible structures of up to 60 nm in size. These results imply that this material is more versatile in terms of inclusion capabilities and consequently widens the opportunities in developing multivalent vesicles for nanobiotechnology applications.


Journal of Controlled Release | 2009

Extracellular matrix binding mixed micelles for drug delivery applications

Conlin P. O'Neil; André J. van der Vlies; Diana Velluto; Christine Wandrey; Davide Demurtas; Jacques Dubochet; Jeffrey A. Hubbell

We present the formation of collagen-binding mixed micelles and their potential suitability to deliver therapeutic drugs to the vessel wall. We modified poly(ethylene oxide)-bl-poly(propylene oxide)-bl-poly(ethylene oxide) (Pluronic F-127) to display sulfate groups on the terminus of the PEO block to act as a heparin mimics and bind to collagen in the extracellular matrix. This functionalized macroamphiphile was incorporated into a mixed micelle with poly(propylene sulfide)-bl-poly(ethylene oxide), a macroamphiphile that demonstrates improved micellar stability relative to Pluronic F-127 micelles. The mixed micelles were examined using analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy, and measures of the critical micellar concentration using surface tensiometry. Encapsulation and in vitro release of Sirolimus, an immunosuppressant drug of interest in coronary artery treatment, was considered as an example. Mixed micelles with the sulfate functionality demonstrated enhanced binding to collagen I coated surfaces, suggestive of the potential for binding to the extracellular milieu.


Nucleic Acids Research | 2009

Bending modes of DNA directly addressed by cryo-electron microscopy of DNA minicircles.

Davide Demurtas; Arnaud Amzallag; Eric J. Rawdon; John H. Maddocks; Jacques Dubochet; Andrzej Stasiak

We use cryo-electron microscopy (cryo-EM) to study the 3D shapes of 94-bp-long DNA minicircles and address the question of whether cyclization of such short DNA molecules necessitates the formation of sharp, localized kinks in DNA or whether the necessary bending can be redistributed and accomplished within the limits of the elastic, standard model of DNA flexibility. By comparing the shapes of covalently closed, nicked and gapped DNA minicircles, we conclude that 94-bp-long covalently closed and nicked DNA minicircles do not show sharp kinks while gapped DNA molecules, containing very flexible single-stranded regions, do show sharp kinks. We corroborate the results of cryo-EM studies by using Bal31 nuclease to probe for the existence of kinks in 94-bp-long minicircles.


Nature Communications | 2015

Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography

Davide Demurtas; Paul Guichard; Isabelle Martiel; Raffaele Mezzenga; Cécile Hébert; Laurent Sagalowicz

Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase.


Nucleic Acids Research | 2011

Cooperative kinking at distant sites in mechanically stressed DNA

Troy A. Lionberger; Davide Demurtas; Guillaume Witz; Julien Dorier; Todd D. Lillian; Edgar Meyhöfer; Andrzej Stasiak

In cells, DNA is routinely subjected to significant levels of bending and twisting. In some cases, such as under physiological levels of supercoiling, DNA can be so highly strained, that it transitions into non-canonical structural conformations that are capable of relieving mechanical stress within the template. DNA minicircles offer a robust model system to study stress-induced DNA structures. Using DNA minicircles on the order of 100 bp in size, we have been able to control the bending and torsional stresses within a looped DNA construct. Through a combination of cryo-EM image reconstructions, Bal31 sensitivity assays and Brownian dynamics simulations, we have been able to analyze the effects of biologically relevant underwinding-induced kinks in DNA on the overall shape of DNA minicircles. Our results indicate that strongly underwound DNA minicircles, which mimic the physical behavior of small regulatory DNA loops, minimize their free energy by undergoing sequential, cooperative kinking at two sites that are located about 180° apart along the periphery of the minicircle. This novel form of structural cooperativity in DNA demonstrates that bending strain can localize hyperflexible kinks within the DNA template, which in turn reduces the energetic cost to tightly loop DNA.


Physical Chemistry Chemical Physics | 2011

Structural modifications of ionic liquid surfactants for improving the water dispersibility of carbon nanotubes: an experimental and theoretical study

Antonello Di Crescenzo; Massimiliano Aschi; Elisa Del Canto; Silvia Giordani; Davide Demurtas; Antonella Fontana

The 1-hexadecyl-3-vinylimidazolium bromide (hvimBr), a water-soluble long-chain imidazolium ionic liquid (IL) with surfactant properties, showed the ability to produce stable homogeneous aqueous dispersions of pristine Single-Walled Carbon Nanotubes (SWNTs). The purpose of this study is the improvement of SWNT dispersing ability by assessing the effect of different groups in position 3 of the imidazole ring. In this regard structural analogues were synthesized and, after characterization, their capability to dissolve SWNTs in water was investigated. Molecular Dynamics (MD) simulations have been performed to provide a semi-quantitative indication of the affinity of each dispersing agent toward SWNT and to attempt an explanation of the experimental results.

Collaboration


Dive into the Davide Demurtas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Velluto

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge