Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Maria Fadda is active.

Publication


Featured researches published by Anna Maria Fadda.


Journal of Controlled Release | 2000

Microemulsions for topical delivery of 8-methoxsalen

Bianca Maria Baroli; M. Arturo López-Quintela; M. Begoña Delgado-Charro; Anna Maria Fadda; J. Blanco-Méndez

8-Methoxsalen (8-MOP) and related furocumarins have been extensively used for the treatment of hyperproliferative skin diseases in association with long-wavelength UVA light. In order to develop alternative formulations for the topical administration of 8-MOP, microemulsions were evaluated as delivery vehicles. Six microemulsion formulations were prepared using water, isopropyl myristate (IPM) and Tween((R)) 80: Span((R)) 80: 1,2-Octanediol (3:1:1.2 w/w). The microemulsions were characterized using conductimetric and dynamic light scattering analyses. The ability of the systems to deliver 8-MOP into and through the skin was evaluated in vitro using newborn pig-skin. The in vitro permeation data showed that the novel microemulsions increased the 8-MOP total penetration through the skin by order of 1.9-4.5, as compared with IPM. In general, the accumulation of 8-MOP into the skin was increased by a factor of 1.5-4.5 by the microemulsion systems with respect to their total amount of drug delivered across the skin. These results suggest that the studied microemulsion systems may be appropriate vehicles for the topical delivery of 8-MOP.


International Journal of Pharmaceutics | 2002

Niosomes as carriers for tretinoin I. Preparation and properties

Maria Manconi; Chiara Sinico; Donatella Valenti; Giuseppe Loy; Anna Maria Fadda

Tretinoin-loaded niosomes were prepared from polyoxyethylene (4) lauryl ether, sorbitan esters and a commercial mixture of octyl/decyl polyglucosides, in the presence of cholesterol and dicetyl phosphate. Liposomes made of hydrogenated and non-hydrogenated phosphatidylcholine were also prepared as a comparison reference. A study was made of the influence of vesicle composition and preparation method on the vesicle structure (MLV, LUV, SUV), size distribution, entrapment efficiency and in vitro release of incorporated tretinoin. Results showed that in the presence of cholesterol all the amphiphiles used were able to form stable vesicle dispersions with or without tretinoin. Vesicle sizes were dependent on the preparation method, bilayer composition and drug load. Multilamellar (MLV) vesicles were larger than extruded (LUV) and sonicated (SUV) vesicles while drug-loaded vesicles were generally smaller than empty ones. Entrapment efficiencies of tretinoin were always very high especially for multilamellar (91-99%) and extruded (88-98%) vesicles. The in vitro release of tretinoin from the prepared vesicular formulations was studied using the vertical Franz diffusion cells. The rate of drug release through a Silastic membrane from a liposomal and niosomal tretinoin dispersion was generally faster than from a tretinoin solution. Release data showed that tretinoin delivery is mainly affected by the vesicular structure and that tretinoin delivery increased from MLVs to LUVs to SUVs.


Expert Opinion on Drug Delivery | 2009

Vesicular carriers for dermal drug delivery.

Chiara Sinico; Anna Maria Fadda

The skin can offer several advantages as a route of drug administration although its barrier nature makes it difficult for most drugs to penetrate into and permeate through it. During the past decades there has been a lot of interest in lipid vesicles as a tool to improve drug topical delivery. Vesicular systems such as liposomes, niosomes, ethosomes and elastic, deformable vesicles provide an alternative for improved skin drug delivery. The function of vesicles as topical delivery systems is controversial with variable effects being reported in relation to the type of vesicles and their composition. In fact, vesicles can act as drug carriers controlling active release; they can provide a localized depot in the skin for dermally active compounds and enhance transdermal drug delivery. A wide variety of lipids and surfactants can be used to prepare vesicles, which are commonly composed of phospholipids (liposomes) or non-ionic surfactants (niosomes). Vesicle composition and preparation method influence their physicochemical properties (size, charge, lamellarity, thermodynamic state, deformability) and therefore their efficacy as drug delivery systems. A review of vesicle value in localizing drugs within the skin at the site of action will be provided with emphasis on their potential mechanism of action.


Aaps Pharmscitech | 2006

Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: Preparation and characterization

Francesco Lai; S.A Wissing; Rainer H. Müller; Anna Maria Fadda

The aim of this study was to formulate a new delivery system for ecological pesticides by the incorporation of Artemisia arborescens L essential oil into solid lipid nanoparticles (SLN). Two different SLN formulations were prepared following the high-pressure homogenization technique using Compritol 888 ATO as lipid and Poloxamer 188 or Miranol Ultra C32 as surfactants. The SLN formulation particle size was determined using Photon correlation spectroscopy (PCS) and laser diffraction analysis (LD). The change of particle charge was studied by zeta potential (ZP) measurements, while the melting and recrystallization behavior was studied using differential scanning calorimetry (DSC). In vitro release studies of the essential oil were performed at 35°C. Data showed a high physical stability for both formulations at various storage temperatures during 2 months of investigation. In particular, average diameter of Artemisia arborescens L essential oil-loaded SLN did not vary during storage and increased slightly after spraying the SLN dispersions. In vitro release experiments showed that SLN were able to reduce the rapid evaporation of essential oil if compared with the reference emulsions. Therefore, obtained results showed that the studied SLN formulations are suitable carriers in agriculture.


International Journal of Pharmaceutics | 2003

Niosomes as carriers for tretinoin II. Influence of vesicular incorporation on tretinoin photostability

Maria Manconi; Donatella Valenti; Chiara Sinico; Francesco Lai; Giuseppe Loy; Anna Maria Fadda

In this work, we compared the chemical stability of tretinoin (TRA) in methanol and in vesicular suspensions exposed both to UV and artificial daylight conditions with the aim of evaluating the potential of niosomes as topical carriers capable of improving the stability of photosensitive drugs. Tretinoin-loaded niosomes were prepared from polyoxyethylene (4) lauryl ether (Brij 30), sorbitan esters (Span 40 and Span 60) and a commercial mixture of octyl/decyl polyglucosides (Triton CG110). Liposomes made from hydrogenated (P90H) and non-hydrogenated (P90) soy phosphatidylcholines were also prepared and studied. In order to evaluate the influence of vesicle structure on the photostability of tretinoin, TRA-loaded vesicles were prepared by the film hydration method, extrusion technique and sonication. After UV irradiation, TRA dissolved in methanol degraded very quickly while the incorporation in vesicles always led to a reduction of the photodegradation process. The photoprotection offered by vesicles varied depending on the vesicle structure and composition. After fluorescent light irradiation for 21 days, not all the studied vesicular formulations improved TRA stability when compared with the free drug in methanol. Tretinoin incorporated in P90 or Span vesicles presented a half-life shorter or very close to that of the free drug. However, the inclusion of TRA in P90H liposomes and Brij 30 or Triton CG110 niosomes retarded the drug photodegradation.


International Journal of Pharmaceutics | 2009

Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil

Simona Mura; Maria Manconi; Chiara Sinico; Donatella Valenti; Anna Maria Fadda

The aim of this work was to evaluate the ability of a few different penetration enhancers to produce elastic vesicles with soy lecithin and the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called Penetration Enhancer-containing Vesicles (PEVs) were prepared as dehydrated-rehydrated vesicles by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy)ethanol (Transcutol), capryl-caproyl macrogol 8-glyceride (Labrasol), and cineole. Soy lecithin liposomes, without penetration enhancers, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, and vesicle deformability. The influence of PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through newborn pig skin in comparison with traditional liposomes and ethanolic solutions of the drug also containing each penetration enhancer. A skin pre-treatment study using empty PEVs and conventional liposomes was also carried out. Results showed that all the used penetration enhancers were able to give more deformable vesicles than conventional liposomes with a good drug entrapment efficiency and stability. In vitro skin penetration data showed that PEVs were able to give a statistically significant improvement of minoxidil deposition in the skin in comparison with classic liposomes and penetration enhancer-containing drug ethanolic solutions without any transdermal delivery. Moreover, the most deformable PEVs, prepared with Labrasol and cineole, were also able to deliver to the skin a higher total amount of minoxidil than the PE alcoholic solutions thus suggesting that minoxidil delivery to the skin was strictly correlated to vesicle deformability, and therefore to vesicle composition.


International Journal of Pharmaceutics | 2009

Diclofenac nanosuspensions: influence of preparation procedure and crystal form on drug dissolution behaviour.

Francesco Lai; Chiara Sinico; Guido Ennas; Francesca Marongiu; Giaime Marongiu; Anna Maria Fadda

The aim of this paper was to ascertain the role of drug crystalline form and preparation procedure in nanosuspension formulations in order to optimise dissolution properties of lipophilic, poorly soluble drugs, thus improving their oral bioavailability. The non-steroidal anti-inflammatory drug diclofenac acid (DCF), which is known to exist in different crystal forms, was chosen as a model drug. To this purpose, the influence of homogenization technique was studied by preparing several nanosuspensions with two different crystalline forms of the drug (DCF1 and DCF2). Particle size and size distribution, morphology, microstructure, and thermal behaviour of the different formulations were studied by photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). Solubility studies of the bulk drug crystalline forms and dissolution experiments of nanosuspensions in comparison with different controls (bulk drug, physical mixtures, coarse suspensions) were carried out in different media: distilled water, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Besides well known factors capable of affecting drug nanoparticle dissolution, results showed that drug dissolution rate in nanosuspensions is strongly affected by the drug solubility, which depends on the crystal form, and preparation procedure (high pressure homogenization process). Results demonstrated that this process partially transformed DCF2 in DCF1 while it did not have any effect on the DCF1 crystals.


Colloids and Surfaces B: Biointerfaces | 2009

Chitosan-coated liposomes for delivery to lungs by nebulisation

Marco Zaru; Maria-Letizia Manca; Anna Maria Fadda; Sophia G. Antimisiaris

The preparation of Chitosan (CHT)-coated liposomes and their applicability as a carrier for delivery of drugs to the lungs by nebulisation was investigated. Empty SUV (small unilamellar) liposomes were initially prepared (with different lipid compositions) and coated with CHT by dropwise addition of CHT solution in the liposome dispersion. CHT-coating efficiency was calculated after separation of coated/non-coated liposomes by centrifugation, and measurement of lipid in each fraction. After establishing the best conditions for CHT-coating (concentration of CHT in the solution), RIF-loaded CHT-coated liposomes, with different lipid compositions (negatively charged and non-charged) were constructed, and their encapsulation efficiency (EE) and nebulisation efficiency (NE%)/stability (NER%) were evaluated. Charged liposomes (containing phosphatidylglycerol [PG]) can be coated with CHT better compared to non-charged ones. The EE of CHT-coated liposomes (that contain PG) is slightly increased while their stability after nebulisation is significantly increased (NER%). Mucoadhesive properties of CHT-coated liposomes were substantially better (compared to non-coated ones) while the toxicity of liposomal RIF towards A549 epithelial cells was lower compared to free drug for all the types of vesicles evaluated, and especially the CHT-coated ones. Thereby, it is concluded that CHT-coated liposomes have advantages (compared to non-coated) when the delivery of drugs to the lungs by nebulisation is considered.


Journal of Drug Targeting | 2007

Liposomes and niosomes as potential carriers for dermal delivery of minoxidil

S. Mura; Fabrice Pirot; Maria Manconi; Françoise Falson; Anna Maria Fadda

The aim of this work was to formulate minoxidil loaded liposome and niosome formulations to improve skin drug delivery. Multilamellar liposomes were prepared using soy phosphatidylcholine at different purity degrees (Phospholipon® 90, 90% purity, soy lecithin (SL), 75% purity) and cholesterol (Chol), whereas niosomes were made with two different commercial mixtures of alkylpolyglucoside (APG) surfactants (Oramix® NS10, Oramix® CG110), Chol and dicetylphosphate. Minoxidil skin penetration and permeation experiments were performed in vitro using vertical diffusion Franz cells and human skin treated with either drug vesicular systems or propylene glycol–water–ethanol solution (control). Penetration of minoxidil in epidermal and dermal layers was greater with liposomes than with niosomal formulations and the control solution. These differences might be attributed to the smaller size and the greater potential targeting to skin and skin appendages of liposomal carriers, which enhanced globally the skin drug delivery. The greatest skin accumulation was always obtained with non-dialysed vesicular formulations. No permeation of minoxidil through the whole skin thickness was detected in the present study irrespective of the existence of hair follicles. Alcohol-free liposomal formulations would constitute a promising approach for the topical delivery of minoxidil in hair loss treatment.


Colloids and Surfaces B: Biointerfaces | 2013

Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation.

Carla Caddeo; Maria Manconi; Anna Maria Fadda; Francesco Lai; Sandrina Lampis; Octavio Díez-Sales; Chiara Sinico

In this work we studied various nanoformulations of resveratrol in phospholipid vesicles. Conventional phophatidylcholine liposomes were prepared and characterized in parallel with PEVs (Penetration Enhancer-containing Vesicles) obtained by adding one of eight selected amphiphilic penetration enhancers (PEs; 0.2% w/v; HLB range 1-16) to the composition. All vesicles were around 100 nm, negatively charged (∼-30 mV) and able to incorporate resveratrol in good yields (>74%). The structure and the lamellar self-organization of the vesicles were investigated by Transmission Electron Microscopy (TEM) and Small and Wide Angle X-ray Scattering (SWAXS). These analyses showed that the lamellarity of the vesicles depended on the formulation composition. This work also addressed the stability of our colloidal dispersions, which was measured by means of the analytical centrifuge LUMiSizer(®): this procedure disclosed the absence of any demixing phenomena and estimated a 3- to 6-month shelf-life. Moreover, the antioxidant activity of resveratrol was determined by assessing its ability to scavenge free radicals (DPPH assay), and showed that it was not affected by the vesicular formulation.

Collaboration


Dive into the Anna Maria Fadda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge