Davide Filingeri
Loughborough University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Davide Filingeri.
Neuroscience | 2014
Davide Filingeri; Bernard Redortier; Simon Hodder; George Havenith
The central integration of thermal (i.e. cold) and mechanical (i.e. pressure) sensory afferents is suggested as to underpin the perception of skin wetness. However, the role of temperature and mechanical inputs, and their interaction, is still unclear. Also, it is unknown whether this intra-sensory interaction changes according to the activity performed or the environmental conditions. Hence, we investigated the role of peripheral cold afferents, and their interaction with tactile afferents, in the perception of local skin wetness during rest and exercise in thermo-neutral and warm environments. Six cold-dry stimuli, characterized by decreasing temperatures [i.e. -4, -8 and -15 °C below the local skin temperature (T(sk))] and by different mechanical pressures [i.e. low pressure (LP): 7 kPa; high pressure (HP): 10 kPa], were applied on the back of 8 female participants (age 21 ± 1 years), while they were resting or cycling in 22 or 33 °C ambient temperature. Mean and local Tsk, thermal and wetness perceptions were recorded during the tests. Cold-dry stimuli produced drops in Tsk with cooling rates in a range of 0.06-0.4 °C/s. Colder stimuli resulted in increasing coldness and in stimuli being significantly more often perceived as wet, particularly when producing skin cooling rates of 0.18 °C/s and 0.35 °C/s. However, when stimuli were applied with HP, local wetness perceptions were significantly attenuated. Wetter perceptions were recorded during exercise in the warm environment. We conclude that thermal inputs from peripheral cutaneous afferents are critical in characterizing the perception of local skin wetness. However, the role of these inputs might be modulated by an intra-sensory interaction with the tactile afferents. These findings indicate that human sensory integration is remarkably multimodal.
Neuroscience Letters | 2013
Davide Filingeri; Bernard Redortier; Simon Hodder; George Havenith
Cold sensations are suggested as the primary inducer of the perception of skin wetness. However, limited data are available on the effects of skin cooling. Hence, we investigated the role of peripheral cold afferents in the perception of wetness. Six cold-dry stimuli (producing skin cooling rates in a range of 0.02-0.41°C/s) were applied on the forearm of 9 female participants. Skin temperature and conductance, thermal and wetness perception were recorded. Five out of 9 participants perceived wetness as a result of cold-dry stimuli with cooling rates in a range of 0.14-0.41°C/s, while 4 did not perceive skin wetness at all. Although skin cooling and cold sensations play a role in evoking the perception of wetness, these are not always of a primary importance and other sensory modalities (i.e. touch and vision), as well as the inter-individual variability in thermal sensitivity, might be equally determinant in characterising this perception.
Temperature (Austin, Tex.) | 2015
Davide Filingeri; George Havenith
The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception.
Journal of Human Kinetics | 2013
Stefano Vando; Davide Filingeri; Lucio Maurino; Helmi Chaabene; Antonino Bianco; Gianluca Salernitano; Calogero Foti; Johnny Padulo
Abstract The aim of this study was to investigate the effect of an increasing number of training hours of specific highintensity karate training on postural sway in preadolescent karate athletes. Seventy-four karatekas were randomly assigned to 1 of 2 groups: Karate Group (KG=37): age 10.29±1.68 yrs; or Control Group (CG= 37): age 10.06±1.77 yrs. The KG performed two sessions per day for 1 week in total, while the CG performed only 3 sessions during the same period. The center-of-pressure length (COPL) and velocity (COPV) were recorded under four different experimental conditions: open eyes (EO), closed eyes (EC), open eyes monopodalic left (EOL), open eyes monopodalic right (EOR), pre as well as post training intervention. Post-camp results indicated significant differences between the groups in the COPL p<0.001; an interaction of training type×time in the COPV (p<0.001) and an interaction of training type×time (p=0.020). The KG revealed an improvement in the COPL from pre to post-camp under conditions of EO [-37.26% (p<0.001)], EC [-31.72% (p<0.001)], EOL [-27.27% (p<0.001)], EOR [-21.44% (p<0.001)], while CG revealed small adaptations in conditions of EO (3.16%), EC (0.93%), EOL (-3.03%), EOR (-0.97%). Furthermore, in the KG an improvement in the COPV from pre to post-camp was observed in conditions of EO [-37.92% (p<0.001)], EC [-32.52% (p<0.001)], EOL [-29.11% (p<0.001)], EOR [-21.49% (p<0.001)]. In summary, one-week of high intensity karate training induced a significant improvement in static body balance in preadolescent karate athletes. Karate performance requires high-levels of both static and dynamic balance. Further research dealing with the effect of karate practice on dynamic body balance in young athletes is required.
Comprehensive Physiology | 2016
Davide Filingeri
Undoubtedly, adjusting our thermoregulatory behavior represents the most effective mechanism to maintain thermal homeostasis and ensure survival in the diverse thermal environments that we face on this planet. Remarkably, our thermal behavior is entirely dependent on the ability to detect variations in our internal (i.e., body) and external environment, via sensing changes in skin temperature and wetness. In the past 30 years, we have seen a significant expansion of our understanding of the molecular, neuroanatomical, and neurophysiological mechanisms that allow humans to sense temperature and humidity. The discovery of temperature-activated ion channels which gate the generation of action potentials in thermosensitive neurons, along with the characterization of the spino-thalamo-cortical thermosensory pathway, and the development of neural models for the perception of skin wetness, are only some of the recent advances which have provided incredible insights on how biophysical changes in skin temperature and wetness are transduced into those neural signals which constitute the physiological substrate of skin thermal and wetness sensations. Understanding how afferent thermal inputs are integrated and how these contribute to behavioral and autonomic thermoregulatory responses under normal brain function is critical to determine how these mechanisms are disrupted in those neurological conditions, which see the concurrent presence of afferent thermosensory abnormalities and efferent thermoregulatory dysfunctions. Furthermore, advancing the knowledge on skin thermal and wetness sensations is crucial to support the development of neuroprosthetics. In light of the aforementioned text, this review will focus on the peripheral and central neurophysiological mechanisms underpinning skin thermal and wetness sensations in humans.
Skin Research and Technology | 2015
Davide Filingeri; Bernard Redortier; Simon Hodder; George Havenith
In the absence of humidity receptors in human skin, the perception of skin wetness is considered a somatosensory experience resulting from the integration of temperature (particularly cold) and mechanical inputs. However, limited data are available on the role of the temperature sense.
Journal of Neurophysiology | 2015
Davide Filingeri
Although the ability to detect humidity (i.e., hygrosensation) represents an important sensory attribute in many animal species (including humans), the neurophysiological and molecular bases of such sensory ability remain largely unknown in many animals. Recently, Russell and colleagues (Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT. Proc Natl Acad Sci USA 111: 8269-8274, 2014) provided for the first time neuromolecular evidence for the sensory integration of thermal and mechanical sensory cues which underpin the hygrosensation strategy of an animal (i.e., the free-living roundworm Caenorhabditis elegans) that lacks specific sensory organs for humidity detection (i.e., hygroreceptors). Due to the remarkable similarities in the hygrosensation transduction mechanisms used by hygroreceptor-provided (e.g., insects) and hygroreceptor-lacking species (e.g., roundworms and humans), the findings of Russell et al. highlight potentially universal mechanisms for humidity detection that could be shared across a wide range of species, including humans.
Journal of Applied Physiology | 2016
Sheila Dervis; Geoff B. Coombs; Georgia K. Chaseling; Davide Filingeri; Jovana Smoljanic; Ollie Jay
We sought to determine 1) the influence of adiposity on thermoregulatory responses independently of the confounding biophysical factors of body mass and metabolic heat production (Hprod); and 2) whether differences in adiposity should be accounted for by prescribing an exercise intensity eliciting a fixed Hprod per kilogram of lean body mass (LBM). Nine low (LO-BF) and nine high (HI-BF) body fat males matched in pairs for total body mass (TBM; LO-BF: 88.7 ± 8.4 kg, HI-BF: 90.1 ± 7.9 kg; P = 0.72), but with distinctly different percentage body fat (%BF; LO-BF: 10.8 ± 3.6%; HI-BF: 32.0 ± 5.6%; P < 0.001), cycled for 60 min at 28.1 ± 0.2 °C, 26 ± 8% relative humidity (RH), at a target Hprod of 1) 550 W (FHP trial) and 2) 7.5 W/kg LBM (LBM trial). Changes in rectal temperature (ΔTre) and local sweat rate (LSR) were measured continuously while whole body sweat loss (WBSL) and net heat loss (Hloss) were estimated over 60 min. In the FHP trial, ΔTre (LO-BF: 0.66 ± 0.21 °C, HI-BF: 0.87 ± 0.18 °C; P = 0.02) was greater in HI-BF, whereas mean LSR (LO-BF 0.52 ± 0.19, HI-BF 0.43 ± 0.15 mg·cm(-2)·min(-1); P = 0.19), WBSL (LO-BF 586 ± 82 ml, HI-BF 559 ± 75 ml; P = 0.47) and Hloss (LO-BF 1,867 ± 208 kJ, HI-BF 1,826 ± 224 kJ; P = 0.69) were all similar. In the LBM trial, ΔTre (LO-BF 0.82 ± 0.18 °C, HI-BF 0.54 ± 0.19 °C; P < 0.001), mean LSR (LO-BF 0.59 ± 0.20, HI-BF 0.38 ± 0.12 mg·cm(-2)·min(-1); P = 0.04), WBSL (LO-BF 580 ± 106 ml, HI-BF 381 ± 68 ml; P < 0.001), and Hloss (LO-BF 1,884 ± 277 kJ, HI-BF 1,341 ± 184 kJ; P < 0.001) were all greater at end-exercise in LO-BF. In conclusion, high %BF individuals demonstrate a greater ΔTre independently of differences in mass and Hprod, possibly due to a lower mean specific heat capacity or impaired sudomotor control. However, thermoregulatory responses of groups with different adiposity levels should not be compared using a fixed Hprod in watts per kilogram lean body mass.
Journal of Applied Physiology | 2014
Davide Filingeri; Damien Fournet; Simon Hodder; George Havenith
Sensing skin wetness is linked to inputs arising from cutaneous cold-sensitive afferents. As thermosensitivity to cold varies significantly across the torso, we investigated whether similar regional differences in wetness perception exist. We also investigated the regional differences in thermal pleasantness and whether these sensory patterns are influenced by ambient temperature. Sixteen males (20 ± 2 yr) underwent a quantitative sensory test under thermo-neutral [air temperature (Tair) = 22°C; relative humidity (RH) = 50%] and warm conditions (Tair = 33°C; RH = 50%). Twelve regions of the torso were stimulated with a dry thermal probe (25 cm(2)) with a temperature of 15°C below local skin temperature (Tsk). Variations in Tsk, thermal, wetness, and pleasantness sensations were recorded. As a result of the same cold-dry stimulus, the skin-cooling response varied significantly by location (P = 0.003). The lateral chest showed the greatest cooling (-5 ± 0.4°C), whereas the lower back showed the smallest (-1.9 ± 0.4°C). Thermal sensations varied significantly by location and independently from regional variations in skin cooling with colder sensations reported on the lateral abdomen and lower back. Similarly, the frequency of perceived skin wetness was significantly greater on the lateral and lower back as opposed to the medial chest. Overall wetness perception was slightly higher under warm conditions. Significantly more unpleasant sensations were recorded when the lateral abdomen and lateral and lower back were stimulated. We conclude that humans present regional differences in skin wetness perception across the torso, with a pattern similar to the regional differences in thermosensitivity to cold. These findings indicate the presence of a heterogeneous distribution of cold-sensitive thermo-afferent information.
Journal of Sports Sciences | 2014
Johnny Padulo; Davide Filingeri; Karim Chamari; G. M. Migliaccio; Giuseppe Calcagno; Gerardo Bosco; G Annino; J. Tihanyi; Fabio Pizzolato
Abstract The aim of this study was to investigate the effects of a single bout of whole-body vibration (WBV) on running gait. The running kinematic of sixteen male marathon runners was assessed on a treadmill at iso-efficiency speed after 10 min of WBV and SHAM (i.e. no WBV) conditions. A high-speed camera (210 Hz) was used for the video analysis and heart rate (HR) was also monitored. The following parameters were investigated: step length (SL), flight time (FT), step frequency (SF), contact time (CT), HR and the internal work (WINT). Full-within one-way analysis of variance (ANOVA) of the randomised crossover design indicated that when compared to SHAM conditions, WBV decreased the SL and the FT by ~4% (P < 0.0001) and ~7.2% (P < 0.001), respectively, and increased the SF ~4% (P < 0.0001) while the CT was not changed. This effect occurred during the first minute of running: the SL decreased ~3.5% (P < 0.001) and SF increased ~3.3% (P < 0.001). During the second minute the SL decreased ~1.2% (P = 0.017) and the SF increased ~1.1% (P = 0.02). From the third minute onwards, there was a return to the pre-vibration condition. The WINT was increased by ~4% (P < 0.0001) during the WBV condition. Ten minutes of WBV produced a significant alteration of the running kinematics during the first minutes post exposure. These results provide insights on the effects of WBV on the central components controlling muscle function.