Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Gerosa is active.

Publication


Featured researches published by Davide Gerosa.


Classical and Quantum Gravity | 2015

Testing general relativity with present and future astrophysical observations

Emanuele Berti; Enrico Barausse; Vitor Cardoso; Leonardo Gualtieri; Paolo Pani; Ulrich Sperhake; Leo C. Stein; Norbert Wex; Kent Yagi; Tessa Baker; C. P. Burgess; Flávio S. Coelho; Daniela D. Doneva; Antonio De Felice; Pedro G. Ferreira; P. C. C. Freire; James Healy; Carlos Herdeiro; Michael Horbatsch; Burkhard Kleihaus; Antoine Klein; Kostas D. Kokkotas; Jutta Kunz; Pablo Laguna; Ryan N. Lang; Tjonnie G. F. Li; T. B. Littenberg; Andrew Matas; Saeed Mirshekari; Hirotada Okawa

One century after its formulation, Einsteins general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einsteins theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.


Physical Review D | 2015

Multi-timescale analysis of phase transitions in precessing black-hole binaries

Davide Gerosa; Michael Kesden; Ulrich Sperhake; Emanuele Berti; R. O’Shaughnessy

The dynamics of precessing binary black holes (BBHs) in the post-Newtonian regime has a strong timescale hierarchy: the orbital timescale is very short compared to the spin-precession timescale which, in turn, is much shorter than the radiation-reaction timescale on which the orbit is shrinking due to gravitational-wave emission. We exploit this timescale hierarchy to develop a multiscale analysis of BBH dynamics elaborating on the analysis of Kesden et al. [Phys. Rev. Lett. 114, 081103 (2015)]. We solve the spin-precession equations analytically on the precession time and then implement a quasiadiabatic approach to evolve these solutions on the longer radiation-reaction time. This procedure leads to an innovative “precession-averaged” post-Newtonian approach to studying precessing BBHs. We use our new solutions to classify BBH spin precession into three distinct morphologies, then investigate phase transitions between these morphologies as BBHs inspiral. These precession-averaged post-Newtonian inspirals can be efficiently calculated from arbitrarily large separations, thus making progress towards bridging the gap between astrophysics and numerical relativity.


Physical Review Letters | 2015

Effective Potentials and Morphological Transitions for Binary Black Hole Spin Precession

Michael Kesden; Davide Gerosa; R. O'Shaughnessy; Emanuele Berti; Ulrich Sperhake

We derive an effective potential for binary black hole (BBH) spin precession at second post-Newtonian order. This effective potential allows us to solve the orbit-averaged spin-precession equations analytically for arbitrary mass ratios and spins. These solutions are quasiperiodic functions of time: after a fixed period, the BBH spins return to their initial relative orientations and jointly precess about the total angular momentum by a fixed angle. Using these solutions, we classify BBH spin precession into three distinct morphologies between which BBHs can transition during their inspiral. We also derive a precession-averaged evolution equation for the total angular momentum that can be integrated on the radiation-reaction time and identify a new class of spin-orbit resonances that can tilt the direction of the total angular momentum during the inspiral. Our new results will help efforts to model and interpret gravitational waves from generic BBH mergers and predict the distributions of final spins and gravitational recoils.


Physical Review D | 2014

Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures

Davide Gerosa; R. O'Shaughnessy; Michael Kesden; Emanuele Berti; Ulrich Sperhake

If binary black holes form following the successive core collapses of sufficiently massive binary stars, precessional dynamics may align their spins, S1 and S2, and the orbital angular momentum L into a plane in which they jointly precess about the total angular momentum J. These spin orientations are known as spin-orbit resonances since S1, S2, and L all precess at the same frequency to maintain their planar configuration. Two families of such spin-orbit resonances exist, differentiated by whether the components of the two spins in the orbital plane are either aligned or antialigned. The fraction of binary black holes in each family is determined by the stellar evolution of their progenitors, so if gravitational-wave detectors could measure this fraction they could provide important insights into astrophysical formation scenarios for binary black holes. In this paper, we show that even under the conservative assumption that binary black holes are observed along the direction of J (where precession-induced modulations to the gravitational waveforms are minimized), the waveforms of many members of each resonant family can be distinguished from all members of the other family in events with signal-to-noise ratios ρ≃10, typical of those expected for the first detections with Advanced LIGO and Virgo. We hope that our preliminary findings inspire a greater appreciation of the capability of gravitational-wave detectors to constrain stellar astrophysics and stimulate further studies of the distinguishability of spin-orbit resonant families in more expanded regions of binary black-hole parameter space.


Physical Review D | 2017

Are merging black holes born from stellar collapse or previous mergers

Davide Gerosa; Emanuele Berti

Advanced LIGO detectors at Hanford and Livingston made two confirmed and one marginal detection of binary black holes during their first observing run. The first event, GW150914, was from the merger of two black holes much heavier that those whose masses have been estimated so far, indicating a formation scenario that might differ from “ordinary” stellar evolution. One possibility is that these heavy black holes resulted from a previous merger. When the progenitors of a black hole binary merger result from previous mergers, they should (on average) merge later, be more massive, and have spin magnitudes clustered around a dimensionless spin ∼ 0.7. Here we ask the following question: can gravitational-wave observations determine whether merging black holes were born from the collapse of massive stars (“first generation”), rather than being the end product of earlier mergers (“second generation”)? We construct simple, observationally motivated populations of black hole binaries, and we use Bayesian model selection to show that measurements of the masses, luminosity distance (or redshift), and “effective spin” of black hole binaries can indeed distinguish between these different formation scenarios.


Physical Review Letters | 2015

Precessional instability in binary black holes with aligned spins

Davide Gerosa; Michael Kesden; R. O'Shaughnessy; Antoine Klein; Emanuele Berti; Ulrich Sperhake; Daniele Trifirò

Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.


Monthly Notices of the Royal Astronomical Society | 2013

Black hole mergers: do gas discs lead to spin alignment?

Giuseppe Lodato; Davide Gerosa

In this Letter, we revisit arguments suggesting that the Bardeen–Petterson effect can coalign the spins of a central supermassive black hole binary accreting from a circumbinary (or circumnuclear) gas disc. We improve on previous estimates by adding the dependence on system parameters and noting that the non-linear nature of warp propagation in a thin viscous disc affects alignment. This reduces the disc’s ability to communicate the warp, and can severely reduce the effectiveness of disc-assisted spin alignment. We test our predictions with a Monte Carlo realization of random misalignments and accretion rates, and we find that the outcome depends strongly on the spin magnitude. We estimate a generous upper limit to the probability of alignment by making assumptions which favour it throughout. Even with these assumptions, about 40 per cent of black holes with a 0.5 do not have time to align with the disc. If the residual misalignment is not small and it is maintained down to the final coalescence phase, this can give a powerful recoil velocity to the merged hole. Highly spinning black holes are thus more likely being subject to strong recoils, the occurrence of which is currently debated.


Physical Review Letters | 2017

Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks

R. O’Shaughnessy; Davide Gerosa; D. M. Wysocki

The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binarys orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick v_{k}≳50  km/s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.


Classical and Quantum Gravity | 2015

Tensor-multi-scalar theories: relativistic stars and 3 + 1 decomposition

Michael Horbatsch; Hector O. Silva; Davide Gerosa; Paolo Pani; Emanuele Berti; Leonardo Gualtieri; Ulrich Sperhake

Gravitational theories with multiple scalar fields coupled to the metric and each other --- a natural extension of the well studied single-scalar-tensor theories --- are interesting phenomenological frameworks to describe deviations from general relativity in the strong-field regime. In these theories, the


Physical Review D | 2016

Distinguishing black-hole spin-orbit resonances by their gravitational wave signatures. II: Full parameter estimation

Daniele Trifirò; R. O’Shaughnessy; Davide Gerosa; Emanuele Berti; Michael Kesden; T. B. Littenberg; Ulrich Sperhake

N

Collaboration


Dive into the Davide Gerosa's collaboration.

Top Co-Authors

Avatar

Emanuele Berti

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Ulrich Sperhake

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. O'Shaughnessy

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. O’Shaughnessy

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Aaron Zimmerman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Salvatore Vitale

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. M. Wysocki

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge