Davide Guerra
Consiglio per la ricerca e la sperimentazione in agricoltura
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Davide Guerra.
Current Genomics | 2006
Elisabetta Mazzucotelli; S. Belloni; Daniela Marone; A. M. De Leonardis; Davide Guerra; N. Di Fonzo; Luigi Cattivelli; Anna M. Mastrangelo
The regulation of protein expression and activity has been for long time considered only in terms of transcription/translation efficiency. In the last years, the discovery of post-transcriptional and post-translational regulation mechanisms pointed out that the key factor in determining transcript/protein amount is the synthesis/degradation ratio, together with post-translational modifications of proteins. Polyubiquitinaytion marks target proteins directed to degradation mediated by 26S-proteasome. Recent functional genomics studies pointed out that about 5% of Arabidopsis genome codes for proteins of ubiquitination pathway. The most of them (more than one thousand genes) correspond to E3 ubiquitin ligases that specifically recognise target proteins. The huge size of this gene family, whose members are involved in regulation of a number of biological processes including hormonal control of vegetative growth, plant reproduction, light response, biotic and abiotic stress tolerance and DNA repair, indicates a major role for protein degradation in control of plant life.
Frontiers in Plant Science | 2015
Davide Guerra; Cristina Crosatti; Hamid H. Khoshro; Anna M. Mastrangelo; Erica Mica; Elisabetta Mazzucotelli
Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.
Molecular Biotechnology | 2012
D. Barabaschi; Davide Guerra; Katia Lacrima; Paolo Laino; Vania Michelotti; Simona Urso; Giampiero Valè; Luigi Cattivelli
Extensive insights into the genome composition, organization, and evolution have been gained from the plant genome sequencing and annotation ongoing projects. The analysis of crop genomes provided surprising evidences with important implications in plant origin and evolution: genome duplication, ancestral re-arrangements and unexpected polyploidization events opened new doors to address fundamental questions related to species proliferation, adaptation, and functional modulations. Detailed paleogenomic analysis led to many speculation on how chromosomes have been shaped over time in terms of gene content and order. The completion of the genome sequences of several major crops, prompted to a detailed identification and annotation of transposable elements: new hypothesis related to their composition, chromosomal distribution, insertion models, amplification rate, and evolution patterns are coming up. Availability of full genome sequence of several crop species as well as from many accessions within species is providing new keys for biodiversity exploitation and interpretation. Re-sequencing is enabling high-throughput genotyping to identify a wealth of SNP and afterward to produce haplotype maps necessary to accurately associate molecular variation to phenotype. Conservation genomics is emerging as a powerful tool to explain adaptation, genetic drift, natural selection, hybridization and to estimate genetic variation, fitness and population’s viability.
Journal of Integrative Plant Biology | 2013
Gema López-Torrejón; Davide Guerra; Rafael Catalá; Julio Salinas; Juan Carlos del Pozo
Post-translational modifications (PTMs) chemically and physically alter the properties of proteins, including their folding, subcellular localization, stability, activity, and consequently their function. In spite of their relevance, studies on PTMs in plants are still limited. Small Ubiquitin-like Modifier (SUMO) modification regulates several biological processes by affecting protein-protein interactions, or changing the subcellular localizations of the target proteins. Here, we describe a novel proteomic approach to identify SUMO targets that combines 2-D liquid chromatography, immunodetection, and mass spectrometry (MS) analyses. We have applied this approach to identify nuclear SUMO targets in response to heat shock. Using a bacterial SUMOylation system, we validated that some of the targets identified here are, in fact, labeled with SUMO1. Interestingly, we found that GIGANTEA (GI), a photoperiodic-pathway protein, is modified with SUMO in response to heat shock both in vitro and in vivo.
Plant Physiology | 2012
Davide Guerra; Anna M. Mastrangelo; Gema López-Torrejón; Stephan Marzin; Patrick Schweizer; Antonio Michele Stanca; Juan Carlos del Pozo; Luigi Cattivelli; Elisabetta Mazzucotelli
Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known. In this work, we characterized durum wheat (Triticum durum) RING Finger1 (TdRF1) as a durum wheat nuclear ubiquitin ligase. Moreover, its barley (Hordeum vulgare) homolog was shown to protect cells from dehydration stress. A protein network interacting with TdRF1 has been defined. The transcription factor WHEAT BEL1-TYPE HOMEODOMAIN1 (WBLH1) was degraded in a TdRF1-dependent manner through the 26S proteasome in vivo, the mitogen-activated protein kinase TdWNK5 [for Triticum durum WITH NO LYSINE (K)5] was able to phosphorylate TdRF1 in vitro, and the RING-finger protein WHEAT VIVIPAROUS-INTERACTING PROTEIN2 (WVIP2) was shown to have a strong E3 ligase activity. The genes coding for the TdRF1 interactors were all responsive to cold and/or dehydration stress, and a negative regulative function in dehydration tolerance was observed for the barley homolog of WVIP2. A role in the control of plant development was previously known, or predictable based on homology, for wheat BEL1-type homeodomain1(WBLH1). Thus, TdRF1 E3 ligase might act regulating the response to abiotic stress and remodeling plant development in response to environmental constraints.
Archive | 2012
Anna M. Mastrangelo; Elisabetta Mazzucotelli; Davide Guerra; Pasquale De Vita; Luigi Cattivelli
Drought stress is the major factor limiting yield and yield stability of crops. To improve plant performances under drought conditions direct selection for yield over multiple locations has traditionally been employed. This approach is hampered by low heritability and high G × E interaction influenced by differences arising from soil heterogeneity and others environmental factors. The indirect selection using secondary traits has succeeded only in a few cases, due to problems with repeatability and lack of high-throughput phenotyping strategies. During last years, considerable efforts have been directed towards identifying physiological traits associated with yield and drought resistance. With the availability of whole genome sequences, physical maps, genetics and functional genomics tools for many crops, integrated approaches using molecular breeding and genetic engineering offer new opportunities for improving yield in drought prone conditions. The identification of the genetic bases of important physiological traits and the cloning of the genes sustaining yield in drought-prone environments will move the selection toward a “breeding by design” approach that will accumulate an increasing number of useful traits into elite genotypes that, in turn, will result in a reduction of the gap between yield potential and actual yield.
Archive | 2013
Elisabetta Mazzucotelli; Cristina Crosatti; Lorenzo Giusti; Davide Guerra; Luigi Cattivelli
The molecular response of plants to cold stresses has been often considered as a complex process mainly based on the modulation of transcriptional activity of stress-related genes. Nevertheless, recent findings indicate new layers of regulation. Post-transcriptional mechanisms based on alternative splicing and RNA processing, as well as RNA silencing define the actual transcriptome supporting the cold stress response. Post-translational modifications such as ubiquitination and sumoylation regulate the activity of preexisting molecules. Cross-connections exist among these mechanisms, constituting further and superimposed complexity levels in the molecular processes supporting cold adaptation. Even if not widely identified, targets of these mechanisms are mainly regulatory elements of the molecular pathways of the plant response to cold stress. The network of post-transcriptional and post-translational modifications ensures temporally and spatially appropriate patterns of the cold-related regulone. These emerging sites of regulation offer new opportunities for developing cold tolerant plants through plant engineering.
Plant Signaling & Behavior | 2012
Davide Guerra; Luigi Cattivelli; Elisabetta Mazzucotelli
Plant cells regulate many cellular processes controlling the half-life of critical proteins through ubiquitination. Previously, we characterized two interacting RING-type E3 ubiquitin ligases of Triticum durum, TdRF1 and WVIP2. We revealed their role in tolerance to dehydration, and existing knowledge about their partners also indicated their involvement in the regulation of some aspects of plant development. Here we located WVIP2 in the regulation of the ABA signaling, based on sequence similarities. Further we acquired general evidence about the versatility of ubiquitination in plant cells. A protein can be target of different E3 ligases for a perfect tuning of its abundance as well as the same E3 ligase can ubiquitinate different and unrelated proteins, thus representing a cross-connections between different signaling pathways for a global coordination of cellular processes.
Plant Science | 2008
Elisabetta Mazzucotelli; Anna M. Mastrangelo; Cristina Crosatti; Davide Guerra; A. Michele Stanca; Luigi Cattivelli
Tree Genetics & Genomes | 2015
Davide Guerra; Antonella Lamontanara; Paolo Bagnaresi; Luigi Orrù; Fulvia Rizza; Samanta Zelasco; Deborah Beghè; Tommaso Ganino; Donata Pagani; Luigi Cattivelli; Elisabetta Mazzucotelli
Collaboration
Dive into the Davide Guerra's collaboration.
Consiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputsConsiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputs