Davide Lattanzi
University of Urbino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Davide Lattanzi.
Brain Research | 2004
Patrizia Ambrogini; Davide Lattanzi; Stefano Ciuffoli; Deborah Agostini; Luana Bertini; Vilberto Stocchi; Spartaco Santi
Neurogenesis occurs throughout adult life in dentate gyrus of mammal hippocampus. Therefore, neurons at different stages of electrophysiological and morphological maturation and showing various, if any, synaptic inputs co-exist in the adult granule cell layer, as occurs during dentate gyrus development. The knowledge of functional properties of new neurons throughout their maturation can contribute to understanding their role in the hippocampal function. In this study electrophysiological and morphological features of granule layer cells, characterized as immature or mature neurons, without and with synaptic input, were comparatively described in adult rats. The patch-clamp technique was used to perform electrophysiological recordings, the occurrence of synaptic input evoked by medial perforant pathway stimulation was investigated and synaptic input was characterized. Cells were then identified and morphologically described via detection of biocytin injected through the patch pipette. The neuronal phenotype of recorded cells was assessed by immunohistochemistry and single-cell RT-PCR. Cells with very low capacitance, high input resistance, depolarized resting membrane potential and without synaptic activity were found exclusively at the border of the GCL facing hilus; this type of cell expressed the class III beta-tubulin neuronal marker (mRNA and protein) and did not express a glial marker. Immature neuronal cells with progressively increasing capacitance, decreasing input resistance and resting membrane potential getting more hyperpolarized showed only depolarizing GABAergic synaptic input at first and then also glutamatergic synaptic input. Finally, cells showing electrophysiological, synaptic, and morphological features of mature granule, expressing the mature neuron marker NeuN, were identified.
Hippocampus | 2009
Patrizia Ambrogini; Davide Lattanzi; Stefano Ciuffoli; Andrea Frontini; Mirco Fanelli
Adult‐generated hippocampal immature neurons play a functional role after integration in functional circuits. Previously, we found that hippocampus‐dependent learning in Morris water maze affects survival of immature neurons, even before they are synaptically contacted. Beside learning, this task heavily engages animals in physical activity in form of swimming; physical activity enhances hippocampal neurogenesis. In this article, the effects of training in Morris water maze apparatus on the synapse formation onto new neurons in hippocampus dentate gyrus and on neuronal maturation were investigated in adult rats. Newborn cells were identified using retroviral GFP‐expressing virus infusion. In the first week after virus infusion, rats were trained in Morris water maze apparatus in three different conditions (spatial learning, cue test, and swimming). Properties of immature neurons and their synaptic response to perforant pathway stimulation were electrophysiologically investigated early during neuronal maturation. In controls, newborn cells showing GABAergic and glutamatergic responses were found for the first time at 8 and 10 days after mitosis, respectively; no cell with glutamatergic response only was found. Twelve days after virus infusion almost all GFP‐positive cells showed both synaptic responses. The main result we found was the anticipated appearance of GABAergic synapses at 6 days in learner, cued and swimmer rats, supported also by immunohistochemical result. Swimmer rats showed the highest percentage of GFP‐positive neurons with glutamatergic response at 10 and 12 days postmitosis. Moreover, primary dendrites were more numerous at 7 days in learner, cued and swimmer rats and swimmer rats showed the greatest dendritic tree complexity at 10 days. Finally, voltage‐dependent Ca2+ current was found in a larger number of newborn neurons at 7 days postinfusion in learner, cued and swimmer rats. In conclusion, experiences involving physical activity contextualized in an exploring behavior affect synaptogenesis in adult‐generated cells and their early stages of maturation.
Brain Research | 2013
Patrizia Ambrogini; Davide Lattanzi; Stefano Ciuffoli; Michele Betti; Mirco Fanelli
A brief training in a pool maze, with or without cognitive tasks, modifies the synaptogenesis and maturation of newborn neurons in adult rat dentate gyrus. These types of trainings have many aspects, including physical activity and exploration. Therefore, to evaluate whether physical exercise and environment exploration are able to affect synapse formation and the maturation of adult-generated neurons, GFP-retrovirus infusion was performed on rats which, on the fourth day after injection, were housed under running conditions or allowed to explore an enriched environment briefly in the absence of exercise for the following three days. Afterward, at the end of the trainings, electrophysiological and morphological studies were conducted. Considering that neurotrophic factors increase after exercise or environment exploration, hippocampal BDNF levels and TrkB receptor activation were evaluated. In this study, we show that both spontaneous physical activity and enriched environment exploration induced synaptogenesis and T-type voltage-dependent Ca(2+) currents in very immature neurons. Hippocampal BDNF levels and TrkB receptor activation were determined to be increasing following physical activity and exploration. A possible contribution of BDNF signaling in mediating the observed effects was supported by the use of 7-8-dihydroxyflavone, a selective TrkB agonist, and of ANA-12, an inhibitor of TrkB receptors.
Journal of Nutritional Biochemistry | 2011
Michele Betti; Patrizia Ambrogini; Andrea Minelli; Alessandro Floridi; Davide Lattanzi; Stefano Ciuffoli; Corrado Bucherelli; Emilia Prospero; Andrea Frontini; Lory Santarelli; Elisabetta Baldi; Fernando Benetti; Francesco Galli
Vitamin E (α-tocopherol) supplementation has been tested as prophylaxis against gestational disorders associated with oxidative damage. However, recent evidence showing that high maternal α-tocopherol intake can adversely affect offspring development raises concerns on the safety of vitamin E extradosages during pregnancy. Besides acting as an antioxidant, α-tocopherol depresses cell proliferation and modulates cell signaling through inhibiting protein kinase C (PKC), a kinase that is deeply involved in neural maturation and plasticity. Possible effects of α-tocopherol loads in the maturing brain, where PKC dysregulation is associated to developmental dysfunctions, are poorly known. Here, supranutritional doses of α-tocopherol were fed to pregnant and lactating dams to evaluate the effects on PKC signaling and morphofunctional maturation in offspring hippocampus. Results showed that maternal supplementation potentiates hippocampal α-tocopherol incorporation in offspring and leads to marked decrease of PKC phosphorylation throughout postnatal maturation, accompanied by reduced phosphorylation of growth-associated protein-43 and myristoylated alanine-rich C kinase substrate, two PKC substrates involved in neural development and plasticity. Although processes of neuronal maturation, synapse formation and targeting appeared unaffected, offspring of supplemented mothers displayed a marked reduction of long-term synaptic plasticity in juvenile hippocampus. Interestingly, this impairment persisted in adulthood, when a deficit in hippocampus-dependent, long-lasting spatial memory was also revealed. In conclusion, maternal supplementation with elevated doses of α-tocopherol can influence cell signaling and synaptic plasticity in developing hippocampus and promotes permanent adverse effects in adult offspring. The present results emphasize the need to evaluate the safety of supranutritional maternal intake of α-tocopherol in humans.
Free Radical Research | 2011
Michele Betti; Andrea Minelli; Patrizia Ambrogini; Stefano Ciuffoli; Valentina Viola; Francesco Galli; Barbara Canonico; Davide Lattanzi; Evelin Colombo; Piero Sestili
Abstract Vitamin E (as α-tocopherol, α-T) is proposed to alleviate glia-mediated inflammation in neurological diseases, but such a role in epilepsy is still elusive. This study investigated the effect of α-T supplementation on glial activation, neuronal cell death and oxidative stress of rat brain exposed to kainate-induced seizures. Animals were fed for 2 weeks with a α-T-enriched diet (estimated intake of 750 mg/kg/day) before undergoing status epilepticus. Compliance to supplementation was demonstrated by the remarkable increase in brain α-T. Four days after seizure, brain α-T returned to baseline and lipid peroxidation markers decreased as compared to non-supplemented rats. Status epilepticus induced a lower up-regulation of astrocytic and microglial antigens (GFAP and MHC II, respectively) and production of pro-inflammatory cytokines (IL-1β and TNF-α) in supplemented than in non-supplemented animals. This anti-inflammatory effect was associated with a lower neuronal cell death. In conclusion, α-T dietary supplementation prevents oxidative stress, neuroglial over-activation and cell death occurring after kainate-induced seizures. This evidence paves the way to an anti-inflammatory and neuroprotective role of α-T interventions in epilepsy.
Journal of Neuroscience Research | 2012
Stefano Sartini; Piero Sestili; Evelin Colombo; Chiara Martinelli; Fanny Bartolini; Stefano Ciuffoli; Davide Lattanzi; Davide Sisti
Creatine (Cr) is a very popular ergogenic molecule that has recently been shown to have antioxidant properties. The effectiveness of Cr supplementation in treating neurological diseases and Cr deficiency syndromes has been demonstrated, and experimental reports suggest that it plays an important role in CNS development. In spite of this body of evidence, the role of Cr in functional and structural neuronal differentiation is still poorly understood. Here we used electrophysiological, morphological, and biochemical approaches to study the effects of Cr supplementation on in vitro differentiation of spinal neuroblasts under standard conditions or subjected to oxidative stress, a status closely related to perinatal hypoxia‐ischemia, a severe condition for developing brain. Cr supplementation (10 and 20 mM) completely prevented the viability decrease and neurite development impairment induced by radical attack, as well as nonprotein sulphydryl antioxidant pool depletion. Similar results were obtained using the antioxidant trolox. Furthermore, Cr supplementation induced a significant and dose‐dependent anticipation of Na+ and K+ current expression during the period of in vitro network building. Consistently with the latter finding, higher excitability, expressed as number of spikes following depolarization, was found in supplemented neuroblasts. All effects were dependent on the cytosolic fraction of Cr, as shown using a membrane Cr‐transporter blocker. Our results indicate that Cr protects differentiating neuroblasts against oxidative insults and, moreover, affects their in vitro electrophysiological maturation, suggesting possibly relevant effects of dietary Cr supplementation on developing CNS.
Journal of Advanced Neuroscience Research | 2015
Dasiel O. Borroto-Escuela; Ismel Brito; Michael Di Palma; Antonio Jiménez-Beristain; Manuel Narváez; Fidel Corrales; Mariana Pita-Rodríguez; Stefano Sartini; Patrizia Ambrogini; Davide Lattanzi; Luigi F. Agnati; Kjell Fuxe
The early work on neuropeptide-monoamine receptor-receptor interactions in the Central Nervous System gave the first indications of the existence of G protein-coupled receptors (GPCRs) heteroreceptor complexes and the GPCR field began to expand from monomers into heteromers and higher order heteromers, including also GPCR-ion channel, Receptor Tyrosine Kinases (RTK)-GPCR and Receptor activity-modifying proteins-GPCR heteroreceptor complexes. The existence of heteroreceptor complexes with allosteric receptor-receptor interactions increases the diversity of receptor function including recognition, trafficking and signalling. We have proposed the molecular phenomenon of receptor-receptor interactions as a good way to understand of how brain function can increase through molecular integration of signals. An alteration in specific receptor-receptor interactions or their balance/equilibrium (with the corresponding monomers-homomers) are indeed considered to have a role in the pathogenic mechanisms that lead to various diseases, including drug addiction, depression, Parkinsons disease and schizophrenia. Therefore, targeting protomer-protomer interactions in heteroreceptor complexes or the balance with their corresponding homoreceptor complexes in discrete brain regions may become an important field for developing novel drugs, including heterobivalent drugs and optimal types of combined treatments. Increasing our understanding of molecular integration of signals via allosteric receptor-receptor interactions in the heteroreceptor complexes will have a major impact on the molecular medicine, leading to novel strategies for drug discovery and treatment of diseases.
European Journal of Histochemistry | 2013
Davide Curzi; Davide Lattanzi; S. Ciuffoli; Sabrina Burattini; R. E. Grindeland; V.R. Edgerton; Roland R. Roy; James G. Tidball; Elisabetta Falcieri
Myotendinous junctions (MTJs) are specialized sites on the muscle surface where forces generated by myofibrils are transmitted across the sarcolemma to the extracellular matrix. At the ultrastructural level, the interface between the sarcolemma and extracellular matrix is highly folded and interdigitated at these junctions. In this study, the effect of exercise and growth hormone (GH) treatments on the changes in MTJ structure that occur during muscle unloading, has been analyzed. Twenty hypophysectomized rats were assigned randomly to one of five groups: ambulatory control, hindlimb unloaded, hindlimb unloaded plus exercise (3 daily bouts of 10 climbs up a ladder with 50% body wt attached to the tail), hindlimb unloaded plus GH (2 daily injections of 1 mg/kg body wt, i.p.), and hindlimb unloaded plus exercise plus GH. MTJs of the plantaris muscle were analyzed by electron microscopy and the contact between muscle and tendon was evaluated using an IL/B ratio, where B is the base and IL is the interface length of MTJ’s digit-like processes. After 10 days of unloading, the mean IL/B ratio was significantly lower in unloaded (3.92), unloaded plus exercise (4.18), and unloaded plus GH (5.25) groups than in the ambulatory control (6.39) group. On the opposite, the mean IL/B ratio in the group treated with both exercise and GH (7.3) was similar to control. These findings indicate that the interaction between exercise and GH treatments attenuates the changes in MTJ structure that result from chronic unloading and thus can be used as a countermeasure to these adaptations.
Amino Acids | 2016
Piero Sestili; Patrizia Ambrogini; Elena Barbieri; Stefano Sartini; Carmela Fimognari; Cinzia Calcabrini; Anna Rita Diaz; Michele Guescini; Emanuela Polidori; Francesca Luchetti; Barbara Canonico; Davide Lattanzi; Stefano Papa; Vilberto Stocchi
Abstract A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions.
European Journal of Histochemistry | 2014
Sara Salucci; Patrizia Ambrogini; Davide Lattanzi; Michele Betti; Pietro Gobbi; Claudia Galati; Francesco Galli; Andrea Minelli
An increased intake of the antioxidant α-Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Gliasynapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased. These findings indicate that gestational and neonatal exposure to supranutritional Tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant gliasynapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.