Stefano Sartini
University of Urbino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefano Sartini.
Amino Acids | 2011
Piero Sestili; Chiara Martinelli; Evelin Colombo; Elena Barbieri; Lucia Potenza; Stefano Sartini; Carmela Fimognari
Creatine monohydrate (Cr), the most diffuse supplement in the sports industry, is receiving greater attention because of its beneficial effects in a wide number of human degenerative diseases and conditions. These effects can be barely explained on the basis of the sole ergogenic role of the Cr/CrP system. Indeed, a wide number of research articles indicate that Cr is capable of exerting multiple, non-energy related, effects on diverse and relevant cellular targets. Among these effects, the antioxidant activity of Cr emerges as an additional mechanism which is likely to play a supportive role in the Cr-cytoprotection paradigm.
Journal of Neuroscience Research | 2012
Stefano Sartini; Piero Sestili; Evelin Colombo; Chiara Martinelli; Fanny Bartolini; Stefano Ciuffoli; Davide Lattanzi; Davide Sisti
Creatine (Cr) is a very popular ergogenic molecule that has recently been shown to have antioxidant properties. The effectiveness of Cr supplementation in treating neurological diseases and Cr deficiency syndromes has been demonstrated, and experimental reports suggest that it plays an important role in CNS development. In spite of this body of evidence, the role of Cr in functional and structural neuronal differentiation is still poorly understood. Here we used electrophysiological, morphological, and biochemical approaches to study the effects of Cr supplementation on in vitro differentiation of spinal neuroblasts under standard conditions or subjected to oxidative stress, a status closely related to perinatal hypoxia‐ischemia, a severe condition for developing brain. Cr supplementation (10 and 20 mM) completely prevented the viability decrease and neurite development impairment induced by radical attack, as well as nonprotein sulphydryl antioxidant pool depletion. Similar results were obtained using the antioxidant trolox. Furthermore, Cr supplementation induced a significant and dose‐dependent anticipation of Na+ and K+ current expression during the period of in vitro network building. Consistently with the latter finding, higher excitability, expressed as number of spikes following depolarization, was found in supplemented neuroblasts. All effects were dependent on the cytosolic fraction of Cr, as shown using a membrane Cr‐transporter blocker. Our results indicate that Cr protects differentiating neuroblasts against oxidative insults and, moreover, affects their in vitro electrophysiological maturation, suggesting possibly relevant effects of dietary Cr supplementation on developing CNS.
Journal of Advanced Neuroscience Research | 2015
Dasiel O. Borroto-Escuela; Ismel Brito; Michael Di Palma; Antonio Jiménez-Beristain; Manuel Narváez; Fidel Corrales; Mariana Pita-Rodríguez; Stefano Sartini; Patrizia Ambrogini; Davide Lattanzi; Luigi F. Agnati; Kjell Fuxe
The early work on neuropeptide-monoamine receptor-receptor interactions in the Central Nervous System gave the first indications of the existence of G protein-coupled receptors (GPCRs) heteroreceptor complexes and the GPCR field began to expand from monomers into heteromers and higher order heteromers, including also GPCR-ion channel, Receptor Tyrosine Kinases (RTK)-GPCR and Receptor activity-modifying proteins-GPCR heteroreceptor complexes. The existence of heteroreceptor complexes with allosteric receptor-receptor interactions increases the diversity of receptor function including recognition, trafficking and signalling. We have proposed the molecular phenomenon of receptor-receptor interactions as a good way to understand of how brain function can increase through molecular integration of signals. An alteration in specific receptor-receptor interactions or their balance/equilibrium (with the corresponding monomers-homomers) are indeed considered to have a role in the pathogenic mechanisms that lead to various diseases, including drug addiction, depression, Parkinsons disease and schizophrenia. Therefore, targeting protomer-protomer interactions in heteroreceptor complexes or the balance with their corresponding homoreceptor complexes in discrete brain regions may become an important field for developing novel drugs, including heterobivalent drugs and optimal types of combined treatments. Increasing our understanding of molecular integration of signals via allosteric receptor-receptor interactions in the heteroreceptor complexes will have a major impact on the molecular medicine, leading to novel strategies for drug discovery and treatment of diseases.
Amino Acids | 2016
Piero Sestili; Patrizia Ambrogini; Elena Barbieri; Stefano Sartini; Carmela Fimognari; Cinzia Calcabrini; Anna Rita Diaz; Michele Guescini; Emanuela Polidori; Francesca Luchetti; Barbara Canonico; Davide Lattanzi; Stefano Papa; Vilberto Stocchi
Abstract A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions.
European Journal of Neuroscience | 2013
Stefano Sartini; Fanny Bartolini; Patrizia Ambrogini; Michele Betti; Stefano Ciuffoli; Davide Lattanzi; Michael Di Palma
Recently, muscle expression of brain‐derived neurotrophic factor (BDNF) mRNA and protein under activity control has been reported. BDNF is a neurotrophin known to be involved in axon sprouting in the CNS. Hence, we set out to study the effect of chronic treadmill mid‐intensity running on adult rat muscle re‐innervation, and to explore the involvement of BDNF and tropomyosin‐related kinase (Trk) receptors. After nerve crush, muscle re‐innervation was evaluated using intracellular recordings, tension recordings, immunostaining and Western blot analyses. An enhanced muscle multiple innervation was found in running rats that was fully reversed to control values blocking Trk receptors or interrupting the running activity. An increase in muscle multiple innervation was also found in sedentary rats treated with a selective TrkB receptor agonist. The expression of TrkB receptors by intramuscular axons was demonstrated, and increased muscle expression of BDNF was found in running animals. The increase in muscle multiple innervation was consistent with the faster muscle re‐innervation that we found in running animals. We conclude that, when regenerating axons contact muscle cells, muscle activity progressively increases modulating BDNF and possibly other growth factors, which in turn, acting via Trk receptors, induce axon sprouting to re‐innervate skeletal muscle.
Somatosensory and Motor Research | 2002
Patrizia Ambrogini; Stefano Sartini; Bruno C; Davide Lattanzi; M. B. L. Rocchi
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by n motor neurons may explain the increase of motor axons counted proximally to the lesion.
Neuroscience | 1998
Patrizia Ambrogini; Stefano Sartini
In partially denervated skeletal muscle, spared motor fibres sprout, enlarging motor unit size. Neuritogenesis and sprouting are known to depend on the synaptic input to the neurons. This suggests that spared motoneuron reaction to partial muscle denervation might be controlled by primary sensory neurons which directly or indirectly project to motoneurons. In two groups of rats, different surgical procedures were carried out: partial denervation of the extensor digitorum longus muscle without or with homolateral dorsal rhizotomy. Spared motoneuron peripheral field was evaluated by nerve-evoked tension measures. Following partial muscle denervation, spared motoneurons enlarged their projection peripheral field five to six times, innervating most of the denervated portion of the muscle. When dorsal rhizotomy was carried out together with partial denervation, the enlargement of the motoneurons peripheral field occurred later; however, the peripheral field size was the same or greater than that found in partially denervated muscles without dorsal rhizotomy in the long term. Excitatory postsynaptic potential recordings at neuromuscular junctions consistently showed that innervation of denervated muscle cells by spared motoneurons was impaired when the dorsal roots were cut. Finally, in both groups of operated rats an increase in motor unit number occurred early after surgery, anticipating a process normally occurring in the same age range. These findings are consistent with the idea that sensory input trans-synaptically controls motoneuron peripheral field size.
Neuroscience | 2016
Stefano Sartini; Davide Lattanzi; Patrizia Ambrogini; M. Di Palma; Claudia Galati; David Savelli; Emanuela Polidori; Cinzia Calcabrini; Marco Rocchi; Piero Sestili
Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans.
Neuroscience Letters | 1999
Stefano Sartini; Patrizia Ambrogini; Gianluca Fulgenzi; Laura Graciotti
The control of peripheral structural plasticity of motor neurons by primary sensory neurons was studied in rat extensor digitorum longus (EDL) muscle. Polyinnervation of muscle fibers, sprouting and the motor neuron peripheral field size following L4 dorsal root cutting were evaluated using three different approaches: intracellular recording of end plate potentials, histochemical demonstration of sprouting and polyinnervation and in vivo recording of nerve-evoked twitch. Nodal sprouting was found in rhizotomized rats but not in controls and consistently muscle polyinnervation appeared. The muscle portion innervated by L3 ventral root was relatively reduced and that innervated by L5 was relatively enlarged: a trend to caudal shift of muscle innervation arose in rhizotomized rats. A control of motor neuron plasticity by primary sensory neurons is suggested.
Journal of the Neurological Sciences | 1994
Stefano Sartini; Patrizia Ambrogini; Gabriella Gallo
The early period of motor innervation development is characterized by multiple innervation of muscle cells. This transitory state in rat extensor digitorum longus (edl) muscle is normally concluded at weaning when a 1:1 ratio between nerve endings and muscle cells is reached. Motor innervation of edl muscle in rats made hypothyroid after weaning was studied in three ways: electrophysiology (intracellular recordings of muscle postsynaptic potentials) was carried out to study neuromuscular transmission; silver impregnation of terminal axons to observe sprouting; force production in twitch and tetanus following direct muscle stimulation and nerve stimulation. A number of multiply innervated muscle cells was found in hypothyroid rats following two months of treatment. This finding seems to be related to the appearance of nodal sprouting in motor axons. No sign of denervated end-plates was found. Twitch and tetanus tension were smaller than in controls, but they were bigger when referred to unitary muscle mass. Time course of twitch, particularly half relaxation, was slowed in muscles of hypothyroid rats. These findings suggest that plastic processes occur in muscle innervation of rats made hypothyroid after weaning. Therefore, thyroid hormones play a role in stabilizing motor innervation not only during development, but also in adults.