Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Michieletto is active.

Publication


Featured researches published by Davide Michieletto.


ACS Macro Letters | 2014

Threading dynamics of ring polymers in a gel

Davide Michieletto; Davide Marenduzzo; Enzo Orlandini; Gareth P. Alexander; Matthew S. Turner

We perform large scale three-dimensional molecular dynamics simulations of unlinked and unknotted ring polymers diffusing through a background gel, here a three-dimensional cubic lattice. Taking advantage of this architecture, we propose a new method to unambiguously identify and quantify inter-ring threadings (penetrations) and to relate these to the dynamics of the ring polymers. We find that both the number and the persistence time of the threadings increase with the length of the chains, ultimately leading to a percolating network of inter-ring penetrations. We discuss the implications of these findings for the possible emergence of a topological jammed state of very long rings.


Proceedings of the National Academy of Sciences of the United States of America | 2016

A topologically driven glass in ring polymers

Davide Michieletto; Matthew S. Turner

Significance The glass transition is commonly associated with a reduction in the temperature of liquids or by an increase in density of granular materials. In this work, we propose a radically different approach to study dynamical arrest that relies on the topology of the components. We find that a concentrated solution of ring polymers can be driven to a kinetically arrested state by randomly pinning a small fraction of rings, a transition not observed in linear polymers. We attribute this jamming to topological interactions, called “threadings,” that populate solutions of rings. Our work provides the first evidence for these threadings and suggests that very long rings may be expected to be kinetically arrested even as the fraction of pinned rings approaches zero. The static and dynamic properties of ring polymers in concentrated solutions remains one of the last deep unsolved questions in polymer physics. At the same time, the nature of the glass transition in polymeric systems is also not well understood. In this work, we study a novel glass transition in systems made of circular polymers by exploiting the topological constraints that are conjectured to populate concentrated solutions of rings. We show that such rings strongly interpenetrate through one another, generating an extensive network of topological interactions that dramatically affects their dynamics. We show that a kinetically arrested state can be induced by randomly pinning a small fraction of the rings. This occurs well above the classical glass transition temperature at which microscopic mobility is lost. Our work both demonstrates the existence of long-lived inter-ring penetrations and realizes a novel, topologically induced, glass transition.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Topological patterns in two-dimensional gel electrophoresis of DNA knots

Davide Michieletto; Davide Marenduzzo; Enzo Orlandini

Significance Gel electrophoresis is a ubiquitous biophysical technique. It consists of dragging charged biopolymers through a porous gel, by applying an electric field. Because the migration speed depends on topology, this method can be used to classify DNA knots. Currently, electrophoresis relies on empirical observations, and its theoretical understanding is limited. No theory can explain why knot mobility under strong fields depends nonmonotonically on complexity. Our study reveals a possible reason: Although complex knots have a smaller size, and hence move faster through the gel, they can become severely entangled with the gel, causing longer pauses. Our results can improve the design of future electrophoresis experiments. Gel electrophoresis is a powerful experimental method to probe the topology of DNA and other biopolymers. Although there is a large body of experimental work that allows us to accurately separate different topoisomers of a molecule, a full theoretical understanding of these experiments has not yet been achieved. Here we show that the mobility of DNA knots depends crucially and subtly on the physical properties of the gel and, in particular, on the presence of dangling ends. The topological interactions between these and DNA molecules can be described in terms of an “entanglement number” and yield a nonmonotonic mobility at moderate fields. Consequently, in 2D electrophoresis, gel bands display a characteristic arc pattern; this turns into a straight line when the density of dangling ends vanishes. We also provide a novel framework to accurately predict the shape of such arcs as a function of molecule length and topological complexity, which may be used to inform future experiments.


Soft Matter | 2015

Rings in random environments: sensing disorder through topology

Davide Michieletto; Marco Baiesi; Enzo Orlandini; Matthew S. Turner

In this paper we study the role of topology in DNA gel electrophoresis experiments via molecular dynamics simulations. The gel is modelled as a 3D array of obstacles from which half edges are removed at random with probability p, thereby generating a disordered environment. Changes in the microscopic structure of the gel are captured by measuring the electrophoretic mobility of ring polymers moving through the medium, while their linear counterparts provide a control system as we show they are insensitive to these changes. We show that ring polymers provide a novel, non-invasive way of exploiting topology to sense microscopic disorder. Finally, we compare the results from the simulations with an analytical model for the non-equilibrium differential mobility, and find a striking agreement between simulation and theory.


Physical Biology | 2015

Is the kinetoplast DNA a percolating network of linked rings at its critical point

Davide Michieletto; Davide Marenduzzo; Enzo Orlandini

In this work we present a computational study of the kinetoplast genome, modelled as a large number of semiflexible unknotted loops, which are allowed to link with each other. As the DNA density increases, the systems shows a percolation transition between a gas of unlinked rings and a network of linked loops which spans the whole system. Close to the percolation transition, we find that the mean valency of the network, i.e. the average number of loops which are linked to any one loop, is around three, as found experimentally for the kinetoplast DNA (kDNA). Even more importantly, by simulating the digestion of the network by a restriction enzyme, we show that the distribution of oligomers, i.e. structures formed by a few loops which remain linked after digestion, quantitatively matches experimental data obtained from gel electrophoresis, provided that the density is, once again, close to the percolation transition. With respect to previous work, our analysis builds on a reduced number of assumptions, yet can still fully explain the experimental data. Our findings suggest that the kDNA can be viewed as a network of linked loops positioned very close to the percolation transition, and we discuss the possible biological implications of this remarkable fact.


Journal of Mathematical Neuroscience | 2013

Gap Junctions, Dendrites and Resonances: A Recipe for Tuning Network Dynamics

Yulia Timofeeva; Stephen Coombes; Davide Michieletto

Gap junctions, also referred to as electrical synapses, are expressed along the entire central nervous system and are important in mediating various brain rhythms in both normal and pathological states. These connections can form between the dendritic trees of individual cells. Many dendrites express membrane channels that confer on them a form of sub-threshold resonant dynamics. To obtain insight into the modulatory role of gap junctions in tuning networks of resonant dendritic trees, we generalise the “sum-over-trips” formalism for calculating the response function of a single branching dendrite to a gap junctionally coupled network. Each cell in the network is modelled by a soma connected to an arbitrary structure of dendrites with resonant membrane. The network is treated as a single extended tree structure with dendro-dendritic gap junction coupling. We present the generalised “sum-over-trips” rules for constructing the network response function in terms of a set of coefficients defined at special branching, somatic and gap-junctional nodes. Applying this framework to a two-cell network, we construct compact closed form solutions for the network response function in the Laplace (frequency) domain and study how a preferred frequency in each soma depends on the location and strength of the gap junction.


Nucleus | 2018

Extrusion without a motor: a new take on the loop extrusion model of genome organization.

Chris A. Brackley; J. Johnson; Davide Michieletto; Alexander Morozov; Mario Nicodemi; Peter R. Cook; Davide Marenduzzo

ABSTRACT Chromatin loop extrusion is a popular model for the formation of CTCF loops and topological domains. Recent HiC data have revealed a strong bias in favour of a particular arrangement of the CTCF binding motifs that stabilize loops, and extrusion is the only model to date which can explain this. However, the model requires a motor to generate the loops, and although cohesin is a strong candidate for the extruding factor, a suitable motor protein (or a motor activity in cohesin itself) has yet to be found. Here we explore a new hypothesis: that there is no motor, and thermal motion within the nucleus drives extrusion. Using theoretical modelling and computer simulations we ask whether such diffusive extrusion could feasibly generate loops. Our simulations uncover an interesting ratchet effect (where an osmotic pressure promotes loop growth), and suggest, by comparison to recent in vitro and in vivo measurements, that diffusive extrusion can in principle generate loops of the size observed in the data. Extra View on : C. A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M. Nicodemi, P. R. Cook, and D. Marenduzzo “Non-equilibrium chromosome looping via molecular slip-links”, Physical Review Letters 119 138101 (2017)


arXiv: Subcellular Processes | 2016

Chromosome-wide simulations uncover folding pathway and 3D organization of interphase chromosomes

Davide Michieletto; Davide Marenduzzo; Ajazul Hamid Wani

Three-dimensional interphase organization of metazoan genomes has been linked to cellular identity. However, the principles governing 3D interphase genome architecture and its faithful transmission through disruptive events of cell-cycle, like mitosis, are not fully understood. By using Brownian dynamics simulations of Drosophila chromosome 3R up to time-scales of minutes, we show that chromatin binding profile of Polycomb-repressive-complex-1 robustly predicts a sub-set of topologically associated domains (TADs), and inclusion of other factors recapitulates the profile of all TADs, as observed experimentally. Our simulations show that chromosome 3R attains interphase organization from mitotic state by a two-step process in which formation of local TADs is followed by long-range interactions. Our model also explains statistical features and tracks the assembly kinetics of polycomb subnuclear clusters. In conclusion, our approach can be used to predict structural and kinetic features of 3D chromosome folding and its associated proteins in biological relevant genomic and time scales.


Nucleus | 2016

Simulating topological domains in human chromosomes with a fitting-free model

Chris A. Brackley; Davide Michieletto; F Mouvet; J. Johnson; Steven Kelly; Peter R. Cook; Davide Marenduzzo

ABSTRACT We discuss a polymer model for the 3D organization of human chromosomes. A chromosome is represented by a string of beads, with each bead being “colored” according to 1D bioinformatic data (e.g., chromatin state, histone modification, GC content). Individual spheres (representing bi- and multi-valent transcription factors) can bind reversibly and selectively to beads with the appropriate color. During molecular dynamics simulations, the factors bind, and the string spontaneously folds into loops, rosettes, and topologically-associating domains (TADs). This organization occurs in the absence of any specified interactions between distant DNA segments, or between transcription factors. A comparison with Hi-C data shows that simulations predict the location of most boundaries between TADs correctly. The model is “fitting-free” in the sense that it does not use Hi-C data as an input; consequently, one of its strengths is that it can – in principle – be used to predict the 3D organization of any region of interest, or whole chromosome, in a given organism, or cell line, in the absence of existing Hi-C data. We discuss how this simple model might be refined to include more transcription factors and binding sites, and to correctly predict contacts between convergent CTCF binding sites.


Nucleic Acids Research | 2018

Shaping epigenetic memory via genomic bookmarking

Davide Michieletto; Michael Chiang; Davide Coli; Argyris Papantonis; Enzo Orlandini; Peter R. Cook; Davide Marenduzzo

Abstract Reconciling the stability of epigenetic patterns with the rapid turnover of histone modifications and their adaptability to external stimuli is an outstanding challenge. Here, we propose a new biophysical mechanism that can establish and maintain robust yet plastic epigenetic domains via genomic bookmarking (GBM). We model chromatin as a recolourable polymer whose segments bear non-permanent histone marks (or colours) which can be modified by ‘writer’ proteins. The three-dimensional chromatin organisation is mediated by protein bridges, or ‘readers’, such as Polycomb Repressive Complexes and Transcription Factors. The coupling between readers and writers drives spreading of biochemical marks and sustains the memory of local chromatin states across replication and mitosis. In contrast, GBM-targeted perturbations destabilise the epigenetic patterns. Strikingly, we demonstrate that GBM alone can explain the full distribution of Polycomb marks in a whole Drosophila chromosome. We finally suggest that our model provides a starting point for an understanding of the biophysics of cellular differentiation and reprogramming.

Collaboration


Dive into the Davide Michieletto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Johnson

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge