Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davie Cappoen is active.

Publication


Featured researches published by Davie Cappoen.


Journal of Medicinal Chemistry | 2014

1,2,3,4,8,9,10,11-octahydrobenzo[j]phenanthridine-7,12-diones as new leads against Mycobacterium tuberculosis

Davie Cappoen; Pieter Claes; Jan Jacobs; Roel Anthonissen; Vanessa Mathys; Luc Verschaeve; Kris Huygen; Norbert De Kimpe

Tuberculosis (TB) continues to be a worldwide health problem with over 1.4 million deaths each year. Despite efforts to develop more effective vaccines, more reliable diagnostics, and chemotherapeutics, tuberculosis remains a threat to global health, fueled by the HIV pandemic and the rapid generation of drug resistance. The exploration of novel drugs to serve as a companion drug for existing drugs is of paramount importance. As part of our program to design new 2-aza-anthraquinones with antimycobacterial activity, various tetrahydro- and octahydrobenzo[j]phenanthridinediones were synthesized. These compounds showed high in vitro potency against Mycobacterium tuberculosis, the etiological agent of TB and against other clinically relevant mycobacterial species at submicromolar concentrations. The susceptibility of a multidrug resistant strain toward these compounds and their ability to target intracellular replicating Mycobacterium tuberculosis was demonstrated. Next to the acute toxicity, the genotoxicity of these compounds was investigated. Often overlooked in studies, genotoxicity could be dismissed for the investigated compounds, making them a promising scaffold in TB drug research.


European Journal of Medicinal Chemistry | 2013

Synthesis and antimycobacterial activity of analogues of the bioactive natural products sampangine and cleistopholine

Pieter Claes; Davie Cappoen; Blaise Mavinga Mbala; Jan Jacobs; Birgit Mertens; Vanessa Mathys; Luc Verschaeve; Kris Huygen; Norbert De Kimpe

Identification and investigation of novel classes and compounds for the treatment of tuberculosis remains of utmost importance in the fight against the disease. Despite many efforts, the weakly gram positive Mycobacterium tuberculosis keeps demanding its toll in human lives. For this reason a small library of substituted and unsubstituted aza analogues of cleistopholine and sampangine were synthesized in a short and straightforward manner and tested in vitro against M.tb. The compounds showed promising activity against the M.tb H37Rv strain and Minimal Inhibitory Concentrations (MIC) could be observed as low as 0.88 μM. Accompanied by moderate acute toxicity against C3A hepatocytes, the therapeutic index showed an acceptable range. Further tests confirmed the inhibition by up to 74% of intracellular growth of M.tb inside macrophages conferred by 1-hydroxybenzo[g]isoquinoline-5,10-diones. Activity of the library against other clinically relevant mycobacterial species such as Mycobacterium bovis, Mycobacterium avium and Mycobacterium ulcerans was confirmed. Furthermore the activity against a multi-drug-resistant MDR LAM-1 M.tb strain was tested and the MIC value situated around 1 μM. The lacking genotoxicity of a group of enamine substituted cleistopholine analogues indicates this group as a hit and encourages their use as a scaffold for further studies.


European Journal of Medicinal Chemistry | 2014

2,4-Dialkyl-8,9,10,11-tetrahydrobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraones as new leads against Mycobacterium tuberculosis.

Pieter Claes; Davie Cappoen; Cynthia Uythethofken; Jan Jacobs; Birgit Mertens; Vanessa Mathys; Luc Verschaeve; Kris Huygen; Norbert De Kimpe

Given the re-emergence of tuberculosis in Europe and beyond, the search for novel bio-active compound classes against this disease is of utmost importance. As a result of a high intrinsic tolerance of the etiological agent, Mycobacterium tuberculosis, towards most antibiotics and xenobiotics, the search for such new compounds is far from trivial. Further exacerbated by the rapid generation and spread of drug resistant M. tuberculosis and fuelled by the HIV/AIDS pandemic, halting the tuberculosis epidemic is of paramount importance. As part of our program to design new 2-aza-anthraquinones with anti-mycobacterial activity, various dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones were designed and synthesised. The compounds were submitted to a biological evaluation in which the activity against M.tb H37Rv(lux) was observed, as well as the acute toxicity towards J774 A.1 macrophages. From these results, the selectivity index was calculated. Furthermore, the activity of the most promising compounds was further studied against a multi-drug resistant LAM-1 strain and against intracellular replicating M.tb. The study was further extended with a comet assay and a VITOTOX™ assay to investigate the possibility of observable genotoxic effects caused by these compounds.


European Journal of Medicinal Chemistry | 2012

1,4-diarylpiperazines and analogs as anti-tubercular agents: synthesis and biological evaluation.

Delphine Forge; Davie Cappoen; J. Laurent; Dimitri Stanicki; Annie Mayence; Tien Huang; Luc Verschaeve; Kris Huygen; J.J. Vanden Eynde

Despite progress in modern chemotherapy to combat tuberculosis, the causative pathogen Mycobacterium tuberculosis (M.tb.) is far from eradicated. Bacillary resistance to anti-mycobacterial agents, bacillary persistence and human immunodeficiency virus (HIV) co-infection hamper current drug treatment to completely cure the infection, generating a constant demand for novel drug candidates to tackle these problems. A small library of novel heterocyclic compounds was screened in a rapid luminometric in vitro assay against the laboratory M.tb. strain H37Rv. A group of amidines was found to have the highest potency and was further evaluated for acute toxicity against C3A hepatocytes. Next, the most promising compounds were evaluated for activity against a multi-drug resistant clinical isolate. The group of amidines was also tested for their ability to kill intracellular M.tb. residing in mouse J774A.1 macrophages. Finally, we report on a correlation between the structural differences of the compounds and their anti-mycobacterial activity.


PLOS ONE | 2017

Evaluation of combination therapy for Burkholderia cenocepacia lung infection in different in vitro and in vivo models

Freija Van den Driessche; Bieke Vanhoutte; Gilles Brackman; Aurélie Crabbé; Petra Rigole; Jurgen Vercruysse; G. Verstraete; Davie Cappoen; Chris Vervaet; Paul Cos; Tom Coenye

Burkholderia cenocepacia is an opportunistic pathogen responsible for life-threatening infections in cystic fibrosis patients. B. cenocepacia is extremely resistant towards antibiotics and therapy is complicated by its ability to form biofilms. We investigated the efficacy of an alternative antimicrobial strategy for B. cenocepacia lung infections using in vitro and in vivo models. A screening of the NIH Clinical Collection 1&2 was performed against B. cenocepacia biofilms formed in 96-well microtiter plates in the presence of tobramycin to identify repurposing candidates with potentiator activity. The efficacy of selected hits was evaluated in a three-dimensional (3D) organotypic human lung epithelial cell culture model. The in vivo effect was evaluated in the invertebrate Galleria mellonella and in a murine B. cenocepacia lung infection model. The screening resulted in 60 hits that potentiated the activity of tobramycin against B. cenocepacia biofilms, including four imidazoles of which econazole and miconazole were selected for further investigation. However, a potentiator effect was not observed in the 3D organotypic human lung epithelial cell culture model. Combination treatment was also not able to increase survival of infected G. mellonella. Also in mice, there was no added value for the combination treatment. Although potentiators of tobramycin with activity against biofilms of B. cenocepacia were identified in a repurposing screen, the in vitro activity could not be confirmed nor in a more sophisticated in vitro model, neither in vivo. This stresses the importance of validating hits resulting from in vitro studies in physiologically relevant model systems.


PLOS ONE | 2016

Fluorescence In Vivo Hybridization (FIVH) for Detection of Helicobacter pylori Infection in a C57BL/6 Mouse Model

Sílvia Fontenete; Marina Leite; Davie Cappoen; Rita Santos; Chris Van Ginneken; Ceu Figueiredo; Jesper Wengel; Paul Cos; N. F. Azevedo

Introduction In this study, we applied fluorescence in vivo hybridization (FIVH) using locked nucleic acid (LNA) probes targeting the bacterial rRNA gene for in vivo detection of H. pylori infecting the C57BL/6 mouse model. A previously designed Cy3_HP_LNA/2OMe_PS probe, complementary to a sequence of the H. pylori 16S rRNA gene, was used. First, the potential cytotoxicity and genotoxicity of the probe was assessed by commercial assays. Further, the performance of the probe for detecting H. pylori at different pH conditions was tested in vitro, using fluorescence in situ hybridization (FISH). Finally, the efficiency of FIVH to detect H. pylori SS1 strain in C57BL/6 infected mice was evaluated ex vivo in mucus samples, in cryosections and paraffin-embedded sections by epifluorescence and confocal microscopy. Results H. pylori SS1 strain infecting C57BL/6 mice was successfully detected by the Cy3_HP_LNA/2OMe_PS probe in the mucus, attached to gastric epithelial cells and colonizing the gastric pits. The specificity of the probe for H. pylori was confirmed by microscopy. Conclusions In the future this methodology can be used in combination with a confocal laser endomicroscope for in vivo diagnosis of H. pylori infection using fluorescent LNA probes, which would be helpful to obtain an immediate diagnosis. Our results proved for the first time that FIVH method is applicable inside the body of a higher-order animal.


European Journal of Medicinal Chemistry | 2014

Biological evaluation of diazene derivatives as anti-tubercular compounds

Davie Cappoen; Vita Majce; Cynthia Uythethofken; Damijana Urankar; Vanessa Mathys; Marijan Kočevar; Luc Verschaeve; Slovenko Polanc; Kris Huygen; Janez Košmrlj

Despite efforts made in chemotherapeutic research in the past and present, Mycobacterium tuberculosis (M.tb), the etiological agent of tuberculosis, still causes more than a million deadly casualties each year, second only to HIV. The rapid generation and spread of drug resistant strains, a problem exacerbated by co-infection with HIV demands further efforts in the investigation of novel classes of anti-tubercular compounds. A library of eight substituted diazenecarboxamides, three carbamoyldiazenecarboxylates and four diazene-1,2-dicarboxamides was synthesized in a straightforward manner followed by a biological evaluation of the compounds. We observed minimal inhibitory concentrations below 10 μg/mL against the H37Rv lab strain of M.tb. Three compounds that showed a potency of 90% growth inhibition of M.tb at a concentration lower than 10 μg/mL were further evaluated and showed potency against other clinically relevant mycobacterial species such as Mycobacterium bovis, Mycobacterium avium and Mycobacterium ulcerans. The selected compounds were examined for acute cell toxicity on a murine macrophage like monocyte cell line J774 A.1 in which the cell viability was reduced by 50% at concentrations ranging from 7.4 μg/mL to 20.7 μg/mL. Neither of the three compounds showed signs of genotoxicity by VITOTOX or by Comet assay. The study was complemented by demonstration of the inhibition of intracellular replication of M.tb H37Rv inside J774 A.1 cells at 2 μg/mL concentration and the susceptibility of a MDR LAM-1 strain at concentrations between 5 and 1 μg/mL of the most active compound.


Chemical Biology & Drug Design | 2018

Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds

Eveline Torfs; Jure Vajs; Maíra Bidart de Macedo; Freya Cools; Bieke Vanhoutte; Yury Gorbanev; Annemie Bogaerts; Luc Verschaeve; Guy Caljon; Louis Maes; Peter Delputte; Paul Cos; Janez Košmrlj; Davie Cappoen

The diverse pharmacological properties of the diaryltriazenes have sparked the interest to investigate their potential to be repurposed as antitubercular drug candidates. In an attempt to improve the antitubercular activity of a previously constructed diaryltriazene library, eight new halogenated nitroaromatic triazenides were synthesized and underwent biological evaluation. The potency of the series was confirmed against the Mycobacterium tuberculosis lab strain H37Ra, and for the most potent derivative, we observed a minimal inhibitory concentration of 0.85 μm. The potency of the triazenide derivatives against M. tuberculosis H37Ra was found to be highly dependent on the nature of the halogenated phenyl substituent and less dependent on cationic species used for the preparation of the salts. Although the inhibitory concentration against J774A.1 macrophages was observed at 3.08 μm, the cellular toxicity was not mediated by the generation of nitroxide intermediate as confirmed by electron paramagnetic resonance spectroscopy, whereas no in vitro mutagenicity could be observed for the new halogenated nitroaromatic triazenides when a trifluoromethyl substituent was present on both the aryl moieties.


ACS Medicinal Chemistry Letters | 2017

Novel Potentiators for Vancomycin in the Treatment of Biofilm-Related MRSA Infections via a Mix and Match Approach

Arno Vermote; Gilles Brackman; Martijn Risseeuw; Davie Cappoen; Paul Cos; Tom Coenye; Serge Van Calenbergh

A library of 52 hamamelitannin analogues was synthesized and investigated for its ability to potentiate the effect of vancomycin toward Staphylococcus aureus biofilms. Several compounds were found to effectively increase the susceptibility of staphylococcal biofilms toward this glycopeptide. The most active analogue identified in this study showed an EC50 value of 0.26 μM.


Chemical Biology & Drug Design | 2016

Design, synthesis and biological evaluation of novel quinoline-based carboxylic hydrazides as anti-tubercular agents

Subhash Chander; Penta Ashok; Davie Cappoen; Paul Cos; Sankaranarayanan Murugesan

In this study, seventeen novel quinoline‐based carboxylic hydrazides were designed as potential anti‐tubercular agents using molecular hybridization approach and evaluated in‐silico for drug‐likeness behavior. The compounds were synthesized, purified, and characterized using spectral techniques (like FTIR, 1H NMR, and Mass). The in‐vitro anti‐tubercular activity (against Mycobacterium tuberculosisH37Ra) and cytotoxicity against human lung fibroblast cells were studied. Among the tested hydrazides, four compounds (6h, 6j, 6l, and 6m) exhibited significant anti‐tubercular activity with MIC values below 20 μg/mL. The two most potent compounds of the series, 6j and 6m exhibited MIC values 7.70 and 7.13 μg/mL, respectively, against M. tuberculosis with selectivity index >26. Structure–activity relationship studies were performed for the tested compounds in order to explore the effect of substitution pattern on the anti‐tubercular activity of the synthesized compounds.

Collaboration


Dive into the Davie Cappoen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Cos

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Jacobs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge