Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawei Di is active.

Publication


Featured researches published by Dawei Di.


Nano Letters | 2015

Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix

Guangru Li; Zhi-Kuang Tan; Dawei Di; May Ling Lai; Lang Jiang; Jonathan Hua-Wei Lim; Richard H. Friend; Neil C. Greenham

Electroluminescence in light-emitting devices relies on the encounter and radiative recombination of electrons and holes in the emissive layer. In organometal halide perovskite light-emitting diodes, poor film formation creates electrical shunting paths, where injected charge carriers bypass the perovskite emitter, leading to a loss in electroluminescence yield. Here, we report a solution-processing method to block electrical shunts and thereby enhance electroluminescence quantum efficiency in perovskite devices. In this method, a blend of perovskite and a polyimide precursor dielectric (PIP) is solution-deposited to form perovskite nanocrystals in a thin-film matrix of PIP. The PIP forms a pinhole-free charge-blocking layer, while still allowing the embedded perovskite crystals to form electrical contact with the electron- and hole-injection layers. This modified structure reduces nonradiative current losses and improves quantum efficiency by 2 orders of magnitude, giving an external quantum efficiency of 1.2%. This simple technique provides an alternative route to circumvent film formation problems in perovskite optoelectronics and offers the possibility of flexible and high-performance light-emitting displays.


Journal of Physical Chemistry Letters | 2015

Size-dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix

Dawei Di; Kevin P. Musselman; Guangru Li; Aditya Sadhanala; Yulia Ievskaya; Qilei Song; Zhi-Kuang Tan; May Ling Lai; Judith L. MacManus-Driscoll; Neil C. Greenham; Richard H. Friend

In recent years, organometal halide perovskite materials have attracted significant research interest in the field of optoelectronics. Here, we introduce a simple and low-temperature route for the formation of self-assembled perovskite nanocrystals in a solid organic matrix. We demonstrate that the size and photoluminescence peak of the perovskite nanocrystals can be tuned by varying the concentration of perovskite in the matrix material. The physical origin of the blue shift of the perovskite nanocrystals’ emission compared to its bulk phase is also discussed.


Nanoscale Research Letters | 2012

Si solid-state quantum dot-based materials for tandem solar cells.

Gavin Conibeer; Ivan Perez-Wurfl; Xiaojing Hao; Dawei Di; Dong Lin

The concept of third-generation photovoltaics is to significantly increase device efficiencies whilst still using thin-film processes and abundant non-toxic materials. A strong potential approach is to fabricate tandem cells using thin-film deposition that can optimise collection of energy in a series of cells with decreasing band gap stacked on top of each other. Quantum dot materials, in which Si quantum dots (QDs) are embedded in a dielectric matrix, offer the potential to tune the effective band gap, through quantum confinement, and allow fabrication of optimised tandem solar cell devices in one growth run in a thin-film process. Such cells can be fabricated by sputtering of thin layers of silicon rich oxide sandwiched between a stoichiometric oxide that on annealing crystallise to form Si QDs of uniform and controllable size. For approximately 2-nm diameter QDs, these result in an effective band gap of 1.8 eV. Introduction of phosphorous or boron during the growth of the multilayers results in doping and a rectifying junction, which demonstrates photovoltaic behaviour with an open circuit voltage (VOC) of almost 500 mV. However, the doping behaviour of P and B in these QD materials is not well understood. A modified modulation doping model for the doping mechanisms in these materials is discussed which relies on doping of a sub-oxide region around the Si QDs.


Science | 2017

High-performance light-emitting diodes based on carbene-metal-amides

Dawei Di; Alexander S. Romanov; Le Yang; Johannes M. Richter; Jasmine P. H. Rivett; Saul T. E. Jones; Tudor H. Thomas; Mojtaba Abdi Jalebi; Richard H. Friend; Mikko Linnolahti; Manfred Bochmann; Dan Credgington

Adding a twist for enhanced performance The efficiency of organic light-emitting diodes (OLEDs) is fundamentally governed by the ratio of emissive singlet to dark triplet excitons that are formed from spin-polarized electron and hole currents within the material. Typically, this has set an upper limit of 25% internal quantum efficiency for OLEDs. Di et al. manipulated the ratio of spin states through a modification of process chemistry. They introduced a rotation of the molecular structure, which inverted the spin-state energetics and enhanced OLED performance. Science, this issue p. 159 Spin-state inversion via intramolecular rotation can enhance the performance of solution-processed organic light-emitting diodes. Organic light-emitting diodes (OLEDs) promise highly efficient lighting and display technologies. We introduce a new class of linear donor-bridge-acceptor light-emitting molecules, which enable solution-processed OLEDs with near-100% internal quantum efficiency at high brightness. Key to this performance is their rapid and efficient utilization of triplet states. Using time-resolved spectroscopy, we establish that luminescence via triplets occurs within 350 nanoseconds at ambient temperature, after reverse intersystem crossing to singlets. We find that molecular geometries exist at which the singlet-triplet energy gap (exchange energy) is close to zero, so that rapid interconversion is possible. Calculations indicate that exchange energy is tuned by relative rotation of the donor and acceptor moieties about the bridge. Unlike other systems with low exchange energy, substantial oscillator strength is sustained at the singlet-triplet degeneracy point.


Nanoscale Research Letters | 2010

Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells

Dawei Di; Ivan Perez-Wurfl; Angus Gentle; Dong-Ho Kim; Xiaojing Hao; Lei Shi; Gavin Conibeer; Martin A. Green

As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO2) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H3PO4) etching, nitrogen (N2) gas anneal and forming gas (Ar: H2) anneal on the cells’ electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I–V, light I–V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement.


Advanced Materials | 2017

Efficient Triplet Exciton Fusion in Molecularly Doped Polymer Light-Emitting Diodes

Dawei Di; Le Yang; Johannes M. Richter; Lorenzo Meraldi; Rashid Altamimi; Ahmed Y. Alyamani; Dan Credgington; Kevin P. Musselman; Judith L. MacManus-Driscoll; Richard H. Friend

Solution-processed polymer organic light-emitting diodes (OLEDs) doped with triplet-triplet annihilation (TTA)-upconversion molecules, including 9,10-diphenylanthracene, perylene, rubrene and TIPS-pentacene, are reported. The fraction of triplet-generated electroluminescence approaches the theoretical limit. Record-high efficiencies in solution-processed OLEDs based on these materials are achieved. Unprecedented solid-state TTA-upconversion quantum yield of 23% (TTA-upconversion reaction efficiency of 70%) at electrical excitation well below one-sun equivalent is observed.


Applied Physics Letters | 2011

Electroluminescence from Si nanocrystal/c-Si heterojunction light-emitting diodes

Dawei Di; Ivan Perez-Wurfl; Lingfeng Wu; Yidan Huang; A. Marconi; A. Tengattini; A. Anopchenko; L. Pavesi; Gavin Conibeer

Silicon nanocrystals have shown attractive properties for photonic and photovoltaic applications. We demonstrate all-Si light-emitting diodes based on boron-doped Si nanocrystal/c-Si p-n heterojunction structure, which show electroluminescence in the visible/infrared regions. The electroluminescencespectra of these diodes can be modified by changing the quantum confining barriers from SiO2 to Si3N4. Our results are an important demonstration of electroluminescence from boron-doped Si nanocrystals—a wide band gap absorber material for third generation photovoltaics.


ACS Nano | 2017

Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX3 (X = Br, I) Nanoplates with Controlled Thicknesses

Junjie Si; Yang Liu; Zhuofei He; Hui Du; Kai Du; Dong Chen; Jing Li; Mengmeng Xu; He Tian; Haiping He; Dawei Di; Changqing Lin; Yingchun Cheng; Jianpu Wang; Yizheng Jin

We report a facile solution-based approach to the in situ growth of perovskite films consisting of monolayers of CsPbBr3 nanoplates passivated by bulky phenylbutylammonium (PBA) cations, that is, two-dimensional layered PBA2(CsPbBr3)n-1PbBr4 perovskites. Optimizing film formation processes leads to layered perovskites with controlled n values in the range of 12-16. The layered perovskite emitters show quantum-confined band gap energies with a narrow distribution, suggesting the formation of thickness-controlled quantum-well (TCQW) structures. The TCQW CsPbBr3 films exhibit smooth surface features, narrow emission line widths, low trap densities, and high room-temperature photoluminance quantum yields, resulting in high-color-purity green light-emitting diodes (LEDs) with remarkably high external quantum efficiencies (EQEs) of up to 10.4%. The solution-based approach is extended to the preparation of TCQW CsPbI3 films for high-color-purity red perovskite LEDs with high EQEs of up to 7.3%.


Nature Communications | 2018

Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes.

Wei Zou; Renzhi Li; Shuting Zhang; Yunlong Liu; Nana Wang; Yu Cao; Yanfeng Miao; Mengmeng Xu; Qiang Guo; Dawei Di; Li Zhang; Chang Yi; Feng Gao; Richard H. Friend; Jian-Pu Wang; Wei Huang

Efficiency roll-off is a major issue for most types of light-emitting diodes (LEDs), and its origins remain controversial. Here we present investigations of the efficiency roll-off in perovskite LEDs based on two-dimensional layered perovskites. By simultaneously measuring electroluminescence and photoluminescence on a working device, supported by transient photoluminescence decay measurements, we conclude that the efficiency roll-off in perovskite LEDs is mainly due to luminescence quenching which is likely caused by non-radiative Auger recombination. This detrimental effect can be suppressed by increasing the width of quantum wells, which can be easily realized in the layered perovskites by tuning the ratio of large and small organic cations in the precursor solution. This approach leads to the realization of a perovskite LED with a record external quantum efficiency of 12.7%, and the efficiency remains to be high, at approximately 10%, under a high current density of 500 mA cm−2.Large drop in efficiency at high brightness has been holding back the development of various light-emitting diodes including halide perovskite. Here Zou et al. achieve high quantum efficiency of 10% under a high current density of 500 mA cm−2 in perovskite-based diodes by reducing luminescence quenching.


Nanoscale Research Letters | 2011

Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics

Dawei Di; Heli Xu; Ivan Perez-Wurfl; Martin A. Green; Gavin Conibeer

Silicon nanocrystals with an average size of approximately 4 nm dispersed in SiO2/Si3N4 hybrid matrix have been synthesised by magnetron sputtering followed by a high-temperature anneal. To gain understanding of the photon absorption and emission mechanisms of this material, several samples are characterised optically via spectroscopy and photoluminescence measurements. The values of optical band gap are extracted from interference-minimised absorption and luminescence spectra. Measurement results suggest that these nanocrystals exhibit transitions of both direct and indirect types. Possible mechanisms of absorption and emission as well as an estimation of exciton binding energy are also discussed.

Collaboration


Dive into the Dawei Di's collaboration.

Top Co-Authors

Avatar

Gavin Conibeer

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ivan Perez-Wurfl

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Le Yang

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikko Linnolahti

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Xiaojing Hao

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge