Dawid Janas
Silesian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dawid Janas.
Applied Physics Letters | 2013
Dawid Janas; Nikodem Czechowski; Bartosz Krajnik; Sebastian Mackowski; Krzysztof Koziol
Light emission from carbon nanotube (CNT) films was explored in both the near-infrared and the infrared spectral regions upon application of external bias voltage. We obviated the need to use sophisticated vacuum apparatus by employing state-of-the-art optics and detection system. It enabled us to sensitively probe electroluminescence at relatively low temperatures (T ∼ 300 °C) in ambient conditions and investigate the character of emission from CNT assemblies in real life conditions. The observed spectral response revealed distinct features and the results strongly suggest that CNT assemblies are promising candidates for optoelectronic applications, particularly in the field of telecommunication.
Journal of Materials Science | 2014
Dawid Janas; Stefanie K. Kreft; Sławomir Boncel; Krzysztof Koziol
We devised a simple and effective method of electrochemical functionalization of horizontally aligned CNT films in diluted HCl and H2SO4 solutions upon their electrolysis under a constant current mode. We were able to cause notable generation of carbon–oxygen and carbon–chlorine functional groups on the CNT film anodes as proven by EDX, XPS, and Raman spectroscopy. As a consequence, we observed significant changes of the morphology of the material under electron microscopy, what translated into improved compatibility of CNTs with hydrophilic media. In turn, application of CNT films as cathodes was found as a powerful tool for a thorough cleaning of the nanotubes. Finally, we demonstrated that by the selection of appropriate conditions, CNT films can act as easy-to-make and flexible electrodes with a high stability and performance superior to graphite for generation of non-oxidizing gases such as hydrogen from solution. CNT film electrodes are two orders of magnitude lighter and require much lower overpotential for faradaic splitting of water.
Materials Chemistry Frontiers | 2018
Dawid Janas; Barbara Liszka
Recently, copper–nanocarbon composites have become the focal point of many research groups around the world. The reason for this phenomenon is that carbon nanotubes or graphene have proven that they can bring the technology of copper to a whole new level due to their extraordinary electrical, thermal and mechanical properties. The addition of even small amounts of nanocarbon into a copper matrix can significantly enhance its performance, but unfortunately integration of these two materials is not trivial. In this review article, we highlight methods of manufacture of Cu–nanocarbon composites and properties of the resulting material. We stress their strong and weak points as well as indicate pending challenges remaining to be sorted out to produce a nanocomposite of significantly improved properties as compared to neat Cu. Finally, we identify future directions, which must be taken to bring these materials closer to mass-production and eventually to real-life applications.
Scientific Reports | 2017
Dawid Janas; Grzegorz Stando
We report on the development of a method of formation of hydrophilic carbon nanotube (CNT) films. The technique is simple, straightforward and does not require specialized equipment or use of harsh chemical compounds. Elimination of the need for oxidizing agents has paramount implications because it preserves the inherent CNT properties. A reference study, in which the traditional method of oxidation of CNTs was used to introduce functional groups, gave smaller reduction of water contact angle and made a negative influence on the surface chemistry. From the practical point of view, this method is an important step towards implementation of CNTs in the real life by making them more compatible with interface materials. Interestingly, the method gives high level of control over the surface character of CNT films and hydrophilic character can be precisely patterned where required.
Applied Physics Letters | 2014
Dawid Janas; Nikodem Czechowski; Sebastian Mackowski; Krzysztof Koziol
Spectrally resolved and kinetic response of electroluminescence was monitored from resistively heated carbon nanotube (CNT) macroassemblies. Sensitive detection system and custom-made setup for high-speed optoelectronic measurements were employed to investigate unsorted and single chirality-enriched CNTs. By increasing the content of (7,6) or (6,5) CNTs in a sample, the E11 emission peak in the infrared region became more narrow (∼150 nm), hence approaching that of commercial emitters for this spectral range. Moreover, electroluminescence initiation in CNTs occurred very rapidly and reached its full intensity within tens of milliseconds. Interestingly, observed delay between bias voltage application and electroluminescence proved triplet-triplet annihilation in the macroscopic assembly of CNTs.
Materials Chemistry Frontiers | 2018
Dawid Janas
The discovery of carbon nanotubes (CNTs) revealed that this new form of carbon can challenge traditional materials on many fronts. Remarkable electrical, thermal, mechanical and optical properties of individual CNTs have attracted significant attention, and so scientists have begun to consider their implementation in everyday life. Unfortunately, CNT aggregates are composed of a wide range of CNT types, which has a strongly negative influence on the observed performance of macroscale devices made from them. Recently, however, it has become evident that different CNT types can be sorted according to length, diameter, electrical character, chiral angle and even handedness, which reignited interest in them. This review aims to demonstrate the state-of-the-art of all the mainstream methods of sorting CNTs (preferential synthesis, selective destruction, (di)electrophoresis, ultracentrifugation, chromatography, (co)polymer isolation and aqueous two-phase extraction). It is concluded with an overview of already tested applications using sorted CNTs and gives an overlook of the field for the future.
RSC Advances | 2018
Katarzyna Krukiewicz; Maciej Krzywiecki; Manus Biggs; Dawid Janas
Carbon nanomaterials show great promise for a wide range of applications due to their excellent physicochemical and electrical properties. Since their discovery, the state-of-the-art has expanded the scope of their application from scientific curiosity to impactful solutions. Due to their tunability, carbon nanomaterials can be processed into a wide range of formulations and significant scope exists to couple carbon structures to electronic and electrochemical applications. In this paper, the electrochemical performance of various types of CNT films, which differ by the number of walls, diameter, chirality and surface chemistry is presented. Especially, chirality-sorted (6,5)- and (7,6)-based CNT films are shown to possess a high charge storage capacity (up to 621.91 mC cm−2), areal capacitance (262 mF cm−2), significantly increased effective surface area and advantageous charge/discharge characteristics without addition of any external species, and outperform many other high capacity materials reported in the literature. The results suggest that the control over the CNT structure can lead to the manufacture of macroscopic CNT devices precisely tailored for a wide range of applications, with the focus on energy storage devices and supercapacitors. The sorted CNT macroassemblies show great potential for energy storage technologies to come from R&D laboratories into real life.
Applied Physics Letters | 2018
Dawid Janas; Nikodem Czechowski; Zbigniew Adamus; Tomasz Giżewski
This research details electronic and magneto-transport in unsorted and chirality-enriched carbon nanotube (CNT) films. By measuring the electrical conductivity from 4 K to 297 K, we were able to assign the governing mechanism of electronic transport. Fluctuation-induced tunnelling was in accordance with the obtained data and very well matched the underlying physics. We demonstrated how a change in the type of CNT to make the film affects its electrical performance. As the temperature was decreased down to cryogenic conditions, up to a 56-fold increase in resistance was noted. Moreover, the measurement of magnetoresistance (MR) revealed a non-monotonic dependence on the applied magnetic field. The initial negative component of MR was eventually overpowered by the positive MR component as the field strength was increased beyond a certain threshold.
Advances in Materials Science and Engineering | 2018
Pyry-Mikko Hannula; Minttu Junnila; Dawid Janas; Olof Forsén; Mari Lundström
There is increasing interest towards developing carbon nanotube-copper (CNT-Cu) composites due to potentially improved properties. Carbon nanotube macroscopic materials typically exhibit high resistivity, low electrochemical reactivity, and the presence of impurities, which impede its use as a substrate for electrochemical deposition of metals. In this research, different CNT fiber pretreatment methods, such as heat treatment, immersion in Watts bath, anodization, and exposure to boric acid (H3BO3), were investigated to improve the electrochemical response for copper deposition. It was shown that these treatments affect the surface activity of CNTs, including electrical resistivity, polarization resistance, and active surface area, which influence the electrodeposition process of copper. Properties of CNT structures and CNT-Cu composites were researched by electrochemical impedance spectroscopy (EIS), galvanostatic copper deposition, scanning electron microscope (SEM), and four-point electrical resistance measurements. Heat treatment, Watts bath, anodization, and boric acid treatments were shown to be effective for modifying the CNT surface reactivity for subsequent electrochemical deposition of copper.
Carbon | 2014
Dawid Janas; Artur P. Herman; Sławomir Boncel; Krzysztof Koziol