Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawid Szczepankiewicz is active.

Publication


Featured researches published by Dawid Szczepankiewicz.


Diabetologia | 2013

Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis?

Ayman M. Arafat; Przemyslaw Kaczmarek; Marek Skrzypski; Ewa Pruszyńska-Oszmałek; Paweł A. Kołodziejski; Dawid Szczepankiewicz; Maciej Sassek; T. Wojciechowicz; Bertram Wiedenmann; Andreas F.H. Pfeiffer; Krzysztof W. Nowak; Mathias Z. Strowski

Aims/hypothesisGlucagon reduces body weight by modifying food intake, glucose/lipid metabolism and energy expenditure. All these physiological processes are also controlled by fibroblast growth factor 21 (FGF-21), a circulating hepatokine that improves the metabolic profile in obesity and type 2 diabetes. Animal experiments have suggested a possible interaction between glucagon and FGF-21 however, the metabolic consequences of this crosstalk are not understood.MethodsThe effects of exogenous glucagon on plasma FGF-21 levels and lipolysis were evaluated in healthy volunteers and humans with type 1 diabetes, as well as in rodents with streptozotocin (STZ)-induced insulinopenic diabetes. In vitro, the role of glucagon on FGF-21 secretion and lipolysis was studied using isolated primary rat hepatocytes and adipocytes. Fgf-21 expression in differentiated rat pre-adipocytes was suppressed by small interfering RNA and released FGF-21 was immunoneutralised by polyclonal antibodies.ResultsGlucagon induced lipolysis in healthy human volunteers, patients with type 1 diabetes, mice and rats with STZ-induced insulinopenic diabetes, and in adipocytes isolated from diabetic and non-diabetic animals. In addition, glucagon increased circulating FGF-21 in healthy humans and rodents, as well as in patients with type 1 diabetes, and insulinopenic rodents. Glucagon stimulated FGF-21 secretion from isolated primary hepatocytes and adipocytes derived from animals with insulinopenic diabetes. Furthermore, FGF-21 stimulated lipolysis in primary adipocytes isolated from non-diabetic and diabetic rats. Reduction of Fgf-21 expression (by approximately 66%) or immunoneutralisation of released FGF-21 markedly attenuated glucagon-stimulated lipolysis in adipocytes.Conclusions/interpretationThese results indicate that glucagon increases circulating FGF-21 independently of endogenous insulin levels. FGF-21 participates in glucagon-induced stimulation of lipolysis.


FEBS Letters | 2012

Effects of orexin A on proliferation, survival, apoptosis and differentiation of 3T3‐L1 preadipocytes into mature adipocytes

Marek Skrzypski; P. Kaczmarek; T.T. Le; T. Wojciechowicz; E. Pruszyńska-Oszmalek; Dawid Szczepankiewicz; Maciej Sassek; Ayman M. Arafat; Bertram Wiedenmann; Krzysztof W. Nowak; Mathias Z. Strowski

Metabolic activities of orexin A (OXA) in mature adipocytes are mediated via PI3K/PKB and PPARγ. However, the effects of OXA on preadipocytes are largely unknown. We report here that OXA stimulates the proliferation and viability of 3T3‐L1 preadipocytes and protects them from apoptosis via ERK1/2, but not through PKB. OXA reduces proapoptotic activity of caspase‐3 via ERK1/2. Inhibition of ERK1/2 prevents the differentiation of preadipocytes into adipocytes. Unlike insulin, neither short‐term nor prolonged exposure of 3T3‐L1 preadipocytes to OXA induces preadipocyte differentiation to adipocytes, despite increased ERK1/2 phosphorylation. Unlike insulin, OXA fails to activate PKB, which explains its inability to induce the differentiation of preadipocytes.


Growth Hormone & Igf Research | 2009

Expression of ghrelin receptor, GHSR-1a, and its functional role in the porcine ovarian follicles

Agnieszka Rak; Dawid Szczepankiewicz; Ewa Łucja Gregoraszczuk

Recently, we reported stimulatory effect of ghrelin alone and in combination with growth hormone (GH) on estradiol secretion, aromatase activity in parallel with inhibitory effect on cell apoptosis. The aim of this study was to analyze the expression of the functional ghrelin receptor (GHS-R type 1a) and the effect of GH on GHSR-1a expression in cultured whole porcine follicles. Using RT-PCR and Western Blots, we demonstrated the presence of GHSR-1a in prepubertal pig ovary and found no influence of GH on either GHSR-1a protein levels or mRNA expression. Additionally, to show if, noted previously by us action of ghrelin on ovarian follicular function is dependent of its binding to GHSR-1a, we used an antagonist of the ghrelin receptor, (D-Lys-3)-GHRP-6. In cultures treated together ghrelin and (D-Lys-3)-GHRP-6, estradiol secretion, aromatase activity and cell proliferation returned to control levels. Inhibitory action on caspase-3 activity was not reversed by a selective antagonist of GHSR-1a. In conclusion, results of the present data clearly showed: (1) the presence of GHSR-1a in prepubertal pig ovary and found no influence of GH on GHSR-1a protein levels and mRNA expression, and (2) ghrelin effect on estradiol secretion, aromatase activity and cell proliferation dependent of its binding to GHSR-1a, while the effect on cellular apoptosis was independent of its binding to GHSR-1a.


Regulatory Peptides | 2012

Neuropeptide B and W regulate leptin and resistin secretion, and stimulate lipolysis in isolated rat adipocytes

Marek Skrzypski; Ewa Pruszyńska-Oszmałek; Marcin Rucinski; Dawid Szczepankiewicz; Maciej Sassek; Tatiana Wojciechowicz; Przemyslaw Kaczmarek; Paweł A. Kołodziejski; Mathias Z. Strowski; Ludwik K. Malendowicz; Krzysztof W. Nowak

Neuropeptide B (NPB) and W (NPW) regulate food intake and energy homeostasis in humans via two G-protein-coupled receptor subtypes, termed as GPR7 and GPR8. Rodents express GPR7 only. In animals, NPW decreases insulin and leptin levels, whereas the deletion of either NPB or GPR7 leads to obesity and hyperphagia. Metabolic and endocrine in vitro activities of NPW/NPB in adipocytes are unknown. We therefore characterize the effects of NPB and NPW on the secretion and expression of leptin and resistin, and on lipolysis, using rat adipocytes. Isolated rat adipocytes express GPR7 mRNA. NPB and NPW are expressed in macrophages and preadipocytes but are absent in mature adipocytes. Both, NPB and NPW reduce the secretion and expression of leptin from isolated rat adipocytes. NPB stimulates the secretion and expression of resistin, whereas both, NPB and NPW increase lipolysis. Our study demonstrates for the first time that NPB and NPW regulate the expression and secretion of leptin and resistin, and increase lipolysis in isolated rat adipocytes. These effects are presumably mediated via GPR7. The increase of resistin secretion, stimulation of lipolysis and the decrease of leptin secretion may represent mechanisms, through which NPB and NPW can affect glucose and lipid homeostasis, and food intake in rodents.


Molecular Medicine Reports | 2010

Evaluation of insulin binding and signaling activity of newly synthesized chromium(III) complexes in vitro.

Paweł Maćkowiak; Zbigniew Krejpcio; Maciej Sassek; Przemyslaw Kaczmarek; Iwona Hertig; Joanna Chmielewska; Tatiana Wojciechowicz; Dawid Szczepankiewicz; Daria Wieczorek; Henryk Szymusiak; Krzysztof W. Nowak

In the present study, the influence of chromium(III) complexes (acetate, chloride, glycinate, histidinate, lactate and propionate) on insulin binding and signal transduction [phosphorylation of tyrosine and serine in the insulin receptor substrate (IRS)-1] was investigated in vitro using three experimental models: isolated rat liver membranes and cultured mouse C2C12 myoblasts or 3T3-L1 preadipocytes. The examined complexes did not elevate the binding of insulin to the liver membranes. Moreover, chromium histidinate, lactate, acetate and propionate complexes diminished the specific binding of insulin. Simultaneously, chromium chloride, which did not significantly elevate insulin binding, increased the number of membrane accessible particles of the insulin receptors. However, it was accompanied by slightly diminished affinity of the receptor to the hormone. Chromium acetate and propionate significantly diminished the binding capacity of the low-affinity insulin receptor class. Investigations with the myoblast cell line C2C12 and preadipocyte cell line 3T3-L1 did not allow differentiation of the influence of the examined complexes on insulin binding. Immunodetection of phosphorylated forms of IRS-1 showed that the chromium compounds modulated the transduction of the insulin signal. Chromium glycinate, acetate and propionate decreased the amount of IRS-1 phosphorylated at serine. Since it is generally thought that phosphorylation of serine in IRS-1 may moderate insulin action, the above mentioned chromium complexes may, in this way, enhance insulin effects inside target cells. Phosphorylation of tyrosine in IRS-1, which acts as a stimulatory signal for further steps of insulin action, was elevated after the incubation of 3T3-L1 cells with insulin. Chromium supplementation did not additionally intensify this process. However, in the absence of insulin, chromium glycinate and acetate slightly elevated the level of IRS-1 phosphorylated at tyrosine. This fact may be important in vivo at low levels of insulin in blood. The results indicate that the action of chromium(III) complexes involves a direct effect on the number of receptors accessible to insulin, their affinity to the hormone and the modulation of the signal multiplying proteins by their phosphorylation.


Molecular Medicine Reports | 2015

Obestatin stimulates differentiation and regulates lipolysis and leptin secretion in rat preadipocytes

Tatiana Wojciechowicz; Marek Skrzypski; Paweł A. Kołodziejski; Dawid Szczepankiewicz; Ewa Pruszyńska‑Oszmałek; Przemyslaw Kaczmarek; Mathias Z. Strowski; Krzysztof W. Nowak

Obestatin is a 23-amino acid peptide encoded by the ghrelin gene, which regulates food intake, body weight and insulin sensitivity. Obestatin influences glucose and lipid metabolism in mature adipocytes in rodents. However, the role of this peptide in rat preadipocytes remains to be fully understood. The current study characterized the effects of obestatin on lipid accumulation, preadipocyte differentiation, lipolysis and leptin secretion in rat primary preadipocytes. Obestatin enhanced lipid accumulation in rat preadipocytes and increased the expression of surrogate markers of preadipocyte differentiation. At the early stage of differentiation, obestatin suppressed lipolysis. By contrast, lipolysis was stimulated at the late stage of adipogenesis. Furthermore, obestatin stimulated the release of leptin, a key satiety hormone. Overall, the results indicated that obestatin promotes preadipocyte differentiation. Obestatin increased leptin release in preadipocytes, while the modulation of lipolysis appears to depend upon the stage of differentiation.


Diabetologia | 2014

Glucagon regulates orexin A secretion in humans and rodents

Ayman M. Arafat; Przemyslaw Kaczmarek; Marek Skrzypski; Ewa Pruszyńska-Oszmałek; Paweł A. Kołodziejski; Aikaterini Adamidou; Stephan Ruhla; Dawid Szczepankiewicz; Maciej Sassek; Maria Billert; Bertram Wiedenmann; Andreas F.H. Pfeiffer; Krzysztof W. Nowak; Mathias Z. Strowski

Aims/hypothesisOrexin A (OXA) modulates food intake, energy expenditure, and lipid and glucose metabolism. OXA regulates the secretion of insulin and glucagon, while glucose regulates OXA release. Here, we evaluate the role of glucagon in regulating OXA release both in vivo and in vitro.MethodsIn a double-blind crossover study, healthy volunteers and type 1 diabetic patients received either intramuscular glucagon or placebo. Patients newly diagnosed with type 2 diabetes underwent hyperinsulinaemic–euglycaemic clamp experiments, and insulin–hypoglycaemia tests were performed on healthy volunteers. The primary endpoint was a change in OXA levels after intramuscular glucagon or placebo administration in healthy participants and patients with type 1 diabetes. Secondary endpoints included changes in OXA in healthy participants during insulin tolerance tests and in patients with type 2 diabetes under hyperinsulinaemic–euglycaemic conditions. Participants and staff conducting examinations and taking measurements were blinded to group assignment. OXA secretion in response to glucagon treatment was assessed in healthy and obese mice, the streptozotocin-induced mouse model of type 1 diabetes, and isolated rat pancreatic islets.ResultsPlasma OXA levels declined in lean volunteers and in type 1 diabetic patients injected with glucagon. OXA levels increased during hyperinsulinaemic hypoglycaemia testing in healthy volunteers and during hyperinsulinaemic euglycaemic conditions in type 2 diabetic patients. Plasma OXA concentrations in healthy lean and obese mice and in a mouse model of type 1 diabetes were lower after glucagon treatment, compared with vehicle control. Glucagon decreased OXA secretion from isolated rat pancreatic islets at both low and high glucose levels. OXA secretion declined in pancreatic islets exposed to diazoxide at high and low glucose levels, and after exposure to an anti-insulin antibody. Glucagon further reduced OXA secretion in islets pretreated with diazoxide or an anti-insulin antibody.Conclusions/interpretationGlucagon inhibits OXA secretion in humans and animals, irrespective of changes in glucose or insulin levels. Through modifying OXA secretion, glucagon may influence energy expenditure, body weight, food intake and glucose metabolism.


FEBS Letters | 2013

Activation of TRPV4 channel in pancreatic INS-1E beta cells enhances glucose-stimulated insulin secretion via calcium-dependent mechanisms.

Marek Skrzypski; M. Kakkassery; Stefan Mergler; Carsten Grötzinger; Noushafarin Khajavi; Maciej Sassek; Dawid Szczepankiewicz; Bertram Wiedenmann; Krzysztof W. Nowak; Mathias Z. Strowski

Transient receptor potential channel vanilloid type 4 (TRPV4) is a Ca2+‐ and Mg2+‐permeable cation channel that influences oxidative metabolism and insulin sensitivity. The role of TRPV4 in pancreatic beta cells is largely unknown. Here, we characterize the role of TRPV4 in controlling intracellular Ca2+ and insulin secretion in INS‐1E beta cells. Osmotic, thermal or pharmacological activation of TRPV4 caused a rapid rise of intracellular Ca2+ and enhanced glucose‐stimulated insulin secretion. In the presence of the TRPV channel blocker ruthenium red (RuR) or after suppression of TRPV4 protein production, TRPV4 activators failed to increase [Ca2+]i and insulin secretion in INS‐1E cells.


Regulatory Peptides | 2009

Insulinostatic activity of cerebellin — Evidence from in vivo and in vitro studies in rats

Mathias Z. Strowski; Przemyslaw Kaczmarek; Stefan Mergler; Bertram Wiedenmann; Danuta Domin; Przemyslaw Szwajkowski; Tatiana Wojciechowicz; Marek Skrzypski; Dawid Szczepankiewicz; Tomasz Szkudelski; Marcin Rucinski; Ludwik K. Malendowicz; Krzysztof W. Nowak

Cerebellin (CER) is a neuromodulatory hexadecapeptide that originates from the precursor protein precerebellin (Cbln1). Four highly homologous isoforms of Cbln are known (Cbln1-Cbln4), which are expressed in the central nervous system (CNS) and in peripheral tissues. CER modulates synaptic structure formation in the CNS, whereas in the peripheral tissues CER regulates catecholamine secretion. Cbln is also expressed in the pancreas; however, its function in the pancreas is unknown. Here, we demonstrate the role of CER in regulating insulin secretion in vivo and in vitro. We identified Cbln1 and Cbln3 transcripts in rat pancreatic islets and detected Cbln-immunoreactivity, predominantly located in the periphery of the rat endocrine pancreas. In vivo, CER reduced plasma insulin levels in rats after 1 and 2 h. CER decreased insulin secretion from isolated rat pancreatic islets at high (11 mM), but not at low (3.33 mM) glucose concentration. CER inhibited stimulated insulin secretion from clonal rat insulinoma (INS-1) cells, reduced forskolin-induced production of cAMP and intracellular calcium concentration. Our study demonstrates for the first time that Cbln1 and Cbln3 are expressed in the rat endocrine pancreas. Furthermore, we identify CER as an insulinostatic factor, which decreases intracellular cAMP production and calcium in INS-1 cells.


Pancreas | 2009

Does somatostatin confer insulinostatic effects of neuromedin u in the rat pancreas

Przemyslaw Kaczmarek; Ludwik K. Malendowicz; Marzena Fabis; Agnieszka Ziolkowska; Ewa Pruszyńska-Oszmałek; Maciej Sassek; Tatiana Wojciechowicz; Dawid Szczepankiewicz; Karolina Andralojc; Tomasz Szkudelski; Mathias Z. Strowski; Krzysztof W. Nowak

Objectives: Neuromedin U (NmU) is a neuropeptide with anorexigenic activity. Two receptor subtypes (NmUR1 and NmUR2) confer the effects of NmU on target cells. We have recently demonstrated that NmU reduces insulin secretion from isolated pancreatic islets. Aim of our current study is to investigate the role of somatostatin at mediating the effects of NmU on insulin secretion. Methods: Expression of NmU in the pancreas was detected by immunohistochemistry. Insulin and somatostatin secretion from in situ perfused rat pancreas and isolated pancreatic islets was measured by radioimmunoassay. The paracrine effects of somatostatin within pancreatic islets were blocked by cyclosomatostatin, a somatostatin receptor antagonist. Results: Receptor subtype NmUR1, but not NmUR2, was expressed in the endocrine pancreas, predominantly in the periphery. Neuromedin U reduced insulin secretion from in situ perfused rat pancreas and stimulated somatostatin secretion from isolated pancreatic islets. Neuromedin U stimulated somatostatin secretion at both physiological and supraphysiological glucose concentrations. Cyclosomatostatin increased insulin secretion and reduced NmU-induced inhibition of insulin secretion. Conclusions: Neuromedin U reduces insulin and increases somatostatin secretion. Blockade of somatostatin action abolishes the inhibition of insulin secretion by NmU. The results of the study suggest that somatostatin mediates the inhibitory action of NmU on insulin secretion.

Collaboration


Dive into the Dawid Szczepankiewicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludwik K. Malendowicz

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge