Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn C. Harper is active.

Publication


Featured researches published by Dawn C. Harper.


Journal of Cell Biology | 2003

Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis

Joanne F. Berson; Alexander C. Theos; Dawn C. Harper; Danielle Tenza; Graça Raposo; Michael S. Marks

Lysosome-related organelles are cell type–specific intracellular compartments with distinct morphologies and functions. The molecular mechanisms governing the formation of their unique structural features are not known. Melanosomes and their precursors are lysosome-related organelles that are characterized morphologically by intralumenal fibrous striations upon which melanins are polymerized. The integral membrane protein Pmel17 is a component of the fibrils and can nucleate their formation in the absence of other pigment cell–specific proteins. Here, we show that formation of intralumenal fibrils requires cleavage of Pmel17 by a furin-like proprotein convertase (PC). As in the generation of amyloid, proper cleavage of Pmel17 liberates a lumenal domain fragment that becomes incorporated into the fibrils; longer Pmel17 fragments generated in the absence of PC activity are unable to form organized fibrils. Our results demonstrate that PC-dependent cleavage regulates melanosome biogenesis by controlling the fibrillogenic activity of a resident protein. Like the pathologic process of amyloidogenesis, the formation of other tissue-specific organelle structures may be similarly dependent on proteolytic activation of physiological fibrillogenic substrates.


Journal of Biological Chemistry | 2008

Premelanosome Amyloid-like Fibrils Are Composed of Only Golgi-processed Forms of Pmel17 That Have Been Proteolytically Processed in Endosomes

Dawn C. Harper; Alexander C. Theos; Kathryn E. Herman; Danièle Tenza; Graça Raposo; Michael S. Marks

Melanin pigments are synthesized within specialized organelles called melanosomes and polymerize on intraluminal fibrils that form within melanosome precursors. The fibrils consist of proteolytic fragments derived from Pmel17, a pigment cell-specific integral membrane protein. The intracellular pathways by which Pmel17 accesses melanosome precursors and the identity of the Pmel17 derivatives within fibrillar melanosomes have been a matter of debate. We show here that antibodies that detect Pmel17 within fibrillar melanosomes recognize only the luminal products of proprotein convertase cleavage and not the remaining products linked to the transmembrane domain. Moreover, antibodies to the N and C termini detect only Pmel17 isoforms present in early biosynthetic compartments, which constitute a large fraction of detectable steady state Pmel17 in cell lysates because of slow early biosynthetic transport and rapid consumption by fibril formation. Using an antibody to a luminal epitope that is destroyed upon modification by O-linked oligosaccharides, we show that all post-endoplasmic reticulum Pmel17 isoforms are modified by Golgi-associated oligosaccharide transferases, and that only processed forms contribute to melanosome biogenesis. These data indicate that Pmel17 follows a single biosynthetic route from the endoplasmic reticulum through the Golgi complex and endosomes to melanosomes, and that only fragments encompassing previously described functional luminal determinants are present within the fibrils. These data have important implications for the site and mechanism of fibril formation.


Molecular Biology of the Cell | 2009

Localization to Mature Melanosomes by Virtue of Cytoplasmic Dileucine Motifs Is Required for Human OCA2 Function

Anand Sitaram; Rosanna Piccirillo; Ilaria Palmisano; Dawn C. Harper; Esteban C. Dell'Angelica; M. Vittoria Schiaffino; Michael S. Marks

Oculocutaneous albinism type 2 is caused by defects in the gene OCA2, encoding a pigment cell-specific, 12-transmembrane domain protein with homology to ion permeases. The function of the OCA2 protein remains unknown, and its subcellular localization is under debate. Here, we show that endogenous OCA2 in melanocytic cells rapidly exits the endoplasmic reticulum (ER) and thus does not behave as a resident ER protein. Consistently, exogenously expressed OCA2 localizes within melanocytes to melanosomes, and, like other melanosomal proteins, localizes to lysosomes when expressed in nonpigment cells. Mutagenized OCA2 transgenes stimulate melanin synthesis in OCA2-deficient cells when localized to melanosomes but not when specifically retained in the ER, contradicting a proposed primary function for OCA2 in the ER. Steady-state melanosomal localization requires a conserved consensus acidic dileucine-based sorting motif within the cytoplasmic N-terminal region of OCA2. A second dileucine signal within this region confers steady-state lysosomal localization in melanocytes, suggesting that OCA2 might traverse multiple sequential or parallel trafficking routes. The two dileucine signals physically interact in a differential manner with cytoplasmic adaptors known to function in trafficking other proteins to melanosomes. We conclude that OCA2 is targeted to and functions within melanosomes but that residence within melanosomes may be regulated by secondary or alternative targeting to lysosomes.


Journal of Cell Science | 2003

A role for GRIP domain proteins and/or their ligands in structure and function of the trans Golgi network

Atsuko Yoshino; Bert M. Bieler; Dawn C. Harper; David A. Cowan; Shaheen Sutterwala; Nelson B. Cole; J. Michael McCaffery; Michael S. Marks

tGolgin-1 (golgin-245, trans golgi p230) and golgin-97 are members of a family of peripheral membrane proteins of unknown function that localize to the trans Golgi network (TGN) through a conserved C-terminal GRIP domain. We have probed for GRIP protein function by assessing the consequences of overexpressing isolated GRIP domains. By semi-quantitative immunofluorescence microscopy we found that high level expression of epitope-tagged, GRIP domain-containing fragments of tGolgin-1 or golgin-97 specifically altered the characteristic pericentriolar distribution of TGN integral membrane and coat components. Concomitantly, vesicular transport from the TGN to the plasma membrane and furin-dependent cleavage of substrate proteins in the TGN were inhibited. Mutagenesis of a conserved tyrosine in the tGolgin-1 GRIP domain abolished these effects. GRIP domain overexpression had little effect on the distribution of most Golgi stack resident proteins and no effect on markers of other organelles. Electron microscopy analyses of GRIP domain-overexpressing cells revealed distended perinuclear vacuoles and a proliferation of multivesicular late endosomes to which the TGN resident protein TGN46 was largely mislocalized. These studies, the first to address the function of GRIP domain-containing proteins in higher eukaryotes, suggest that some or all of these proteins and/or their ligands function in maintaining the integrity of the TGN by regulating resident protein localization.


Traffic | 2009

ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

Steven T. Truschel; Sabrina Simoes; Subba Rao Gangi Setty; Dawn C. Harper; Danièle Tenza; Penelope C. Thomas; Kathryn E. Herman; Sara D. Sackett; David C. Cowan; Alexander C. Theos; Graça Raposo; Michael S. Marks

Melanosomes are lysosome‐related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky‐Pudlak syndrome that lack BLOC‐1, melanosomal proteins such as tyrosinase‐related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT‐I component, Tsg101, or inhibition of ESCRT function by dominant‐negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT‐dependent, ubiquitylated cargoes such as MART‐1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101‐depleted cells suggests that ESCRT‐I functions downstream of BLOC‐1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT‐I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome‐related organelle.


Blood | 2012

SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models

Ronghua Meng; Yuhuan Wang; Yu Yao; Zhe Zhang; Dawn C. Harper; Harry F. G. Heijnen; Anand Sitaram; Wei Li; Graça Raposo; Mitchell J. Weiss; Mortimer Poncz; Michael S. Marks

Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.


Blood | 2015

Comparative analysis of human ex vivo-generated platelets vs. megakaryocyte-generated platelets in mice: A cautionary tale

Yuhuan Wang; Vincent Hayes; Danuta Jarocha; Xiuli Sim; Dawn C. Harper; Rudy Fuentes; Spencer K. Sullivan; Paul Gadue; Stella T. Chou; Beverly J. Torok-Storb; Michael S. Marks; Deborah L. French; Mortimer Poncz

Thrombopoiesis is the process by which megakaryocytes release platelets that circulate as uniform small, disc-shaped anucleate cytoplasmic fragments with critical roles in hemostasis and related biology. The exact mechanism of thrombopoiesis and the maturation pathways of platelets released into the circulation remain incompletely understood. We showed that ex vivo-generated murine megakaryocytes infused into mice release platelets within the pulmonary vasculature. Here we now show that infused human megakaryocytes also release platelets within the lungs of recipient mice. In addition, we observed a population of platelet-like particles (PLPs) in the infusate, which include platelets released during ex vivo growth conditions. By comparing these 2 platelet populations to human donor platelets, we found marked differences: platelets derived from infused megakaryocytes closely resembled infused donor platelets in morphology, size, and function. On the other hand, the PLP was a mixture of nonplatelet cellular fragments and nonuniform-sized, preactivated platelets mostly lacking surface CD42b that were rapidly cleared by macrophages. These data raise a cautionary note for the clinical use of human platelets released under standard ex vivo conditions. In contrast, human platelets released by intrapulmonary-entrapped megakaryocytes appear more physiologic in nature and nearly comparable to donor platelets for clinical application.


Journal of Biological Chemistry | 2009

Melanoregulin (MREG) modulates lysosome function in pigment epithelial cells.

Monika Damek-Poprawa; Tanja Diemer; Vanda S. Lopes; Concepción Lillo; Dawn C. Harper; Michael S. Marks; Yalin Wu; Janet R. Sparrow; Rivka A. Rachel; David S. Williams; Kathleen Boesze-Battaglia

Melanoregulin (MREG), the product of the Mregdsu gene, is a small highly charged protein, hypothesized to play a role in organelle biogenesis due to its effect on pigmentation in dilute, ashen, and leaden mutant mice. Here we provide evidence that MREG is required in lysosome-dependent phagosome degradation. In the Mreg-/- mouse, we show that loss of MREG function results in phagosome accumulation due to delayed degradation of engulfed material. Over time, the Mreg-/- mouse retinal pigment epithelial cells accumulate the lipofuscin component, A2E. MREG-deficient human and mouse retinal pigment epithelial cells exhibit diminished activity of the lysosomal hydrolase, cathepsin D, due to defective processing. Moreover, MREG localizes to small intracellular vesicles and associates with the endosomal phosphoinositide, phosphatidylinositol 3,5-biphosphate. Collectively, these studies suggest that MREG is required for lysosome maturation and support a role for MREG in intracellular trafficking.


Pigment Cell & Melanoma Research | 2013

The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB

Alexander C. Theos; Brenda Watt; Dawn C. Harper; Karolina J. Janczura; Sarah C. Theos; Kathryn E. Herman; Michael S. Marks

Proteolytic fragments of the pigment cell‐specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue‐restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non‐fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL‐containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N‐glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.


Journal of Thrombosis and Haemostasis | 2015

Intramedullary megakaryocytes internalize released platelet factor 4 and store it in alpha granules.

Michele P. Lambert; Ronghua Meng; Liqing Xiao; Dawn C. Harper; Michael S. Marks; M. A. Kowalska; Mortimer Poncz

Megakaryocytes express and store platelet factor 4 (PF4) in alpha granules. In vivo, PF4 is a clinically relevant, negative regulator of megakaryopoiesis and hematopoietic stem cell replication. These findings would suggest a regulated source of free intramedullary PF4.

Collaboration


Dive into the Dawn C. Harper's collaboration.

Top Co-Authors

Avatar

Michael S. Marks

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mortimer Poncz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joanne F. Berson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ronghua Meng

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kathryn E. Herman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yuhuan Wang

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danièle Tenza

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge