Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn E. Hall is active.

Publication


Featured researches published by Dawn E. Hall.


Plant Physiology | 2002

Insect Footsteps on Leaves Stimulate the Accumulation of 4-Aminobutyrate and Can Be Visualized through Increased Chlorophyll Fluorescence and Superoxide Production

Alan W. Bown; Dawn E. Hall; Kennaway B. MacGregor

A substantial literature has demonstrated that within 2 to 3 h of insect herbivory or mechanical damage, plants synthesize wound-induced proteinase inhibitors that inhibit digestion ([Bergey et al., 1996][1]; [Ryan, 2000][2]). In contrast, we demonstrate here that the simple non-wounding crawling of


Plant Journal | 2011

An integrated genomic, proteomic and biochemical analysis of (+)‐3‐carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil

Dawn E. Hall; Jeanne A. Robert; Christopher I. Keeling; Dominik Domanski; Alfonso Lara Quesada; Sharon Jancsik; Michael A. Kuzyk; Britta Hamberger; Christoph H. Borchers; Jörg Bohlmann

Conifers are extremely long-lived plants that have evolved complex chemical defenses in the form of oleoresin terpenoids to resist attack from pathogens and herbivores. In these species, terpenoid diversity is determined by the size and composition of the terpene synthase (TPS) gene family and the single- and multi-product profiles of these enzymes. The monoterpene (+)-3-carene is associated with resistance of Sitka spruce (Picea sitchensis) to white pine weevil (Pissodes strobi). We used a combined genomic, proteomic and biochemical approach to analyze the (+)-3-carene phenotype in two contrasting Sitka spruce genotypes. Resistant trees produced significantly higher levels of (+)-3-carene than susceptible trees, in which only trace amounts were detected. Biosynthesis of (+)-3-carene is controlled, at the genome level, by a small family of closely related (+)-3-carene synthase (PsTPS-3car) genes (82-95% amino acid sequence identity). Transcript profiling identified one PsTPS-3car gene (PsTPS-3car1) that is expressed in both genotypes, one gene (PsTPS-3car2) that is expressed only in resistant trees, and one gene (PsTPS-3car3) that is expressed only in susceptible trees. The PsTPS-3car2 gene was not detected in genomic DNA of susceptible trees. Target-specific selected reaction monitoring confirmed this pattern of differential expression of members of the PsTPS-3car family at the proteome level. Kinetic characterization of the recombinant PsTPS-3car enzymes identified differences in the activities of PsTPS-3car2 and PsTPS-3car3 as a factor contributing to the different (+)-3-carene profiles of resistant and susceptible trees. In conclusion, variation of the (+)-3-carene phenotype is controlled by copy number variation of PsTPS-3car genes, variation of gene and protein expression, and variation in catalytic efficiencies.


BMC Plant Biology | 2010

Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca)

Eric Abbott; Dawn E. Hall; Bjoern Hamberger; Joerg Bohlmann

BackgroundLaser microdissection (LMD) has been established for isolation of individual tissue types from herbaceous plants. However, there are few reports of cell- and tissue-specific analysis in woody perennials. While microdissected tissues are commonly analyzed for gene expression, reports of protein, enzyme activity and metabolite analysis are limited due in part to an inability to amplify these molecules. Conifer stem tissues are organized in regular patterns with xylem, phloem and cortex development controlled by the activity of the cambial zone (CZ). Defense responses of conifer stems against insects and pathogens involve increased accumulation of terpenoids in cortical resin ducts (CRDs) and de novo formation of traumatic resin ducts from CZ initials. These tissues are difficult to isolate for tissue-specific molecular and biochemical characterization and are thus good targets for application of LMD.ResultsWe describe robust methods for isolation of individual tissue-types from white spruce (Picea glauca) stems for analysis of RNA, enzyme activity and metabolites. A tangential cryosectioning approach was important for obtaining large quantities of CRD and CZ tissues using LMD. We report differential expression of genes involved in terpenoid metabolism between CRD and CZ tissues and in response to methyl jasmonate (MeJA). Transcript levels of β-pinene synthase and levopimaradiene/abietadiene synthase were constitutively higher in CRDs, but induction was stronger in CZ in response to MeJA. 3-Carene synthase was more strongly induced in CRDs compared to CZ. A differential induction pattern was observed for 1-deoxyxyulose-5-phosphate synthase, which was up-regulated in CRDs and down-regulated in CZ. We identified terpene synthase enzyme activity in CZ protein extracts and terpenoid metabolites in both CRD and CZ tissues.ConclusionsMethods are described that allow for analysis of RNA, enzyme activity and terpenoid metabolites in individual tissues isolated by LMD from woody conifer stems. Patterns of gene expression are demonstrated in specific tissues that may be masked in analysis of heterogenous samples. Combined analysis of transcripts, proteins and metabolites of individual tissues will facilitate future characterization of complex processes of woody plant development, including periodic stem growth and dormancy, cell specialization, and defense and may be applied widely to other plant species.


BMC Plant Biology | 2009

Targeted isolation, sequence assembly and characterization of two white spruce ( Picea glauca ) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

Björn Hamberger; Dawn E. Hall; Mack Yuen; Claire Oddy; Britta Hamberger; Christopher I. Keeling; Carol Ritland; Kermit Ritland; Jörg Bohlmann

BackgroundConifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer.ResultsWe used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing.ConclusionWe report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes.


Plant Physiology | 2013

Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases

Dawn E. Hall; Philipp Zerbe; Sharon Jancsik; Alfonso Lara Quesada; Harpreet K. Dullat; Lina Madilao; Macaire Yuen; Jörg Bohlmann

Summary: The biosynthesis of diterpenoid specialized (i.e. secondary) metabolites in conifers is emerging as a modular metabolic network that is built from multiple diterpene synthases and cytochromes P450 of variable functions and activities to produce a diverse and dynamic array of metabolites for plant defense. Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.


BMC Plant Biology | 2013

Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

Dawn E. Hall; Macaire M.S. Yuen; Sharon Jancsik; Alfonso Lara Quesada; Harpreet K. Dullat; Maria Li; Hannah Henderson; Adriana Arango-Velez; Nancy Y. Liao; Roderick T. Docking; Simon K. Chan; Janice E. K. Cooke; Colette Breuil; Steven J.M. Jones; Christopher I. Keeling; Jörg Bohlmann

BackgroundThe mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown.ResultsWe report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species.ConclusionIn the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.


Plant Physiology | 2013

Identification of Genes in Thuja plicata Foliar Terpenoid Defenses

Adam J. Foster; Dawn E. Hall; Leanne Mortimer; Shelley Abercromby; Regine Gries; Gerhard Gries; Jörg Bohlmann; John H. Russell; Jim Mattsson

Transcriptome profiling of foliage with and without resin glands identifies candidate gene products in thujone biosynthesis. Thuja plicata (western redcedar) is a long-lived conifer species whose foliage is rarely affected by disease or insect pests, but can be severely damaged by ungulate browsing. Deterrence to browsing correlates with high foliar levels of terpenoids, in particular the monoterpenoid α-thujone. Here, we set out to identify genes whose products may be involved in the production of α-thujone and other terpenoids in this species. First, we generated a foliar transcriptome database from which to draw candidate genes. Second, we mapped the storage of thujones and other terpenoids to foliar glands. Third, we used global expression profiling to identify more than 600 genes that are expressed at high levels in foliage with glands, but can either not be detected or are expressed at low levels in a natural variant lacking foliar glands. Fourth, we used in situ RNA hybridization to map the expression of a putative monoterpene synthase to the epithelium of glands and used enzyme assays with recombinant protein of the same gene to show that it produces sabinene, the monoterpene precursor of α-thujone. Finally, we identified candidate genes with predicted enzymatic functions for the conversion of sabinene to α-thujone. Taken together, this approach generated both general resources and detailed functional characterization in the identification of genes of foliar terpenoid biosynthesis in T. plicata.


Planta | 2011

Molecular cloning and biochemical characterization of three Concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases.

Dawn E. Hall; Kyung Hee Kim; Vincenzo De Luca

Grapes berries produce and accumulate many reactive secondary metabolites, and encounter a wide range of pathogen- and human-derived xenobiotic compounds. The enzymatic glucosylation of these metabolites changes their reactivity, stability and subcellular location. Two ESTs with more than 90% nucleotide sequence identity to three full-length glucosyltransferases are expressed in several grape tissues. The full-length clones have more than 60% amino acid sequence similarity to previously characterized flavonoid 7-O-glucosyltransferases, catechin O-glucosyltransferases and anthocyanin 5-O-glucosyltransferases. In vitro, these enzymes glucosylate flavonols and the xenobiotic 2,4,5-trichlorophenol (TCP). Kinetic analysis indicates that TCP is the preferred substrate for these enzymes, while expression analysis reveals variable transcription of these genes in grape leaves, flowers and berry tissues. The in vivo role of these Vitis labrusca glucosyltransferases is discussed.


BMC Proceedings | 2011

Biomarkers and gene copy number variation for terpenoid traits associated with insect resistance in Sitka spruce: An integrated genomic, proteomic, and biochemical analysis of (+)-3-carene biosynthesis

Joerg Bohlmann; Dawn E. Hall; Jeanne A. Robert; Christopher I. Keeling; Dominik Domanski; Alfonso Lara Quesada; Sharon Jancsik; Michael A. Kuzyk; Britta Hamberger; Christoph H. Borchers

Conifers have evolved complex chemical defenses in the form of oleoresin terpenoids to resist attack from pathogens and herbivores. The large diversity of terpenoid metabolites is determined by the size and composition of the terpene synthase (TPS) gene family, and the single- and multi-product profiles of these enzymes. The monoterpene (+)-3-carene is associated with resistance of Sitka spruce (Picea sitchensis) to white pine weevil (Pissodes strobi). We used a combined genomic, proteomic and biochemical approach to analyze the (+)-3-carene phenotype in two contrasting Sitka spruce genotypes. Resistant trees produced significantly higher levels of (+)-3-carene than susceptible trees, in which only trace amounts were detected. Biosynthesis of (+)-3-carene is controlled, at the genome level, by a small family of closely related (82-95% amino acid sequence identity) (+)-3-carene synthase (PsTPS-3car) genes. Transcript profiling identified one PsTPS-3car gene (PsTPS-3car1) which is expressed in both genotypes, one gene (PsTPS-3car2) expressed only in resistant trees, and one gene (PsTPS-3car3) expressed only in susceptible trees. The PsTPS-3car2 gene was not detected in genomic DNA of susceptible trees. Target-specific selected reaction monitoring substantiated this pattern of differential expression of members of the PsTPS-3car family on the proteome level. Kinetic characterization of the recombinant PsTPS-3car enzymes identified differences in the activities of PsTPS-3car2 and PsTPS-3car3as a factor for the different (+)-3-carene profiles of resistant and susceptible trees. In conclusion, variation of the (+)-3-carene phenotype is controlled by PsTPS-3car gene copy number variation, variation of gene and protein expression, and variation of catalytic efficiencies.


Archive | 2013

IDENTIFICATION OF GENES IN THUJA PLICATA (WESTERN REDCEDAR) 1

Adam J. Foster; Dawn E. Hall; Leanne Mortimer; Shelley Abercromby; Gerhard Gries; Jörg Bohlmann; John H. Russell; Jim Mattsson

Collaboration


Dive into the Dawn E. Hall's collaboration.

Top Co-Authors

Avatar

Jörg Bohlmann

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Alfonso Lara Quesada

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Christopher I. Keeling

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sharon Jancsik

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harpreet K. Dullat

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Ritland

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge