Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dawn M. E. Bowdish is active.

Publication


Featured researches published by Dawn M. E. Bowdish.


Journal of Immunology | 2002

The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses

Monisha G. Scott; Donald J. Davidson; Michael R. Gold; Dawn M. E. Bowdish; Robert E. W. Hancock

The role of LL-37, a human cationic antimicrobial peptide, in the immune system is not yet clearly understood. It is a widely expressed peptide that can be up-regulated during an immune response. In this report, we demonstrate that LL-37 is a potent antisepsis agent with the ability to inhibit macrophage stimulation by bacterial components such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan. We also demonstrate that LL-37 protects mice against lethal endotoxemia. In addition to preventing macrophage activation by bacterial components, we hypothesized the LL-37 may also have direct effects on macrophage function. We therefore used gene expression profiling to identify macrophage functions that might be modulated by LL-37. These studies revealed that LL-37 directly up-regulates 29 genes and down-regulated another 20 genes. Among the genes predicted to be up-regulated by LL-37 were those encoding chemokines and chemokine receptors. Consistent with this, LL-37 up-regulated the expression of chemokines in macrophages and the mouse lung (monocyte chemoattractant protein 1), human A549 epithelial cells (IL-8), and whole human blood (monocyte chemoattractant protein 1 and IL-8), without stimulating the proinflammatory cytokine, TNFα. LL-37 also up-regulated the chemokine receptors CXCR-4, CCR2, and IL-8RB. These findings indicate that LL-37 may contribute to the immune response by limiting the damage caused by bacterial products and by recruiting immune cells to the site of infection so that they can clear the infection.


Journal of Immunology | 2006

Modulation of the TLR-Mediated Inflammatory Response by the Endogenous Human Host Defense Peptide LL-37

Neeloffer Mookherjee; Kelly L. Brown; Dawn M. E. Bowdish; Silvana Doria; Reza Falsafi; Karsten Hokamp; Fiona M. Roche; Ruixia Mu; Gregory H. Doho; Jelena Pistolic; Jon-Paul Steven Powers; Jenny Bryan; Fiona S. L. Brinkman; Robert E. W. Hancock

The sole human cathelicidin peptide, LL-37, has been demonstrated to protect animals against endotoxemia/sepsis. Low, physiological concentrations of LL-37 (≤1 μg/ml) were able to modulate inflammatory responses by inhibiting the release of the proinflammatory cytokine TNF-α in LPS-stimulated human monocytic cells. Microarray studies established a temporal transcriptional profile and identified differentially expressed genes in LPS-stimulated monocytes in the presence or absence of LL-37. LL-37 significantly inhibited the expression of specific proinflammatory genes up-regulated by NF-κB in the presence of LPS, including NFκB1 (p105/p50) and TNF-α-induced protein 2 (TNFAIP2). In contrast, LL-37 did not significantly inhibit LPS-induced genes that antagonize inflammation, such as TNF-α-induced protein 3 (TNFAIP3) and the NF-κB inhibitor, NFκBIA, or certain chemokine genes that are classically considered proinflammatory. Nuclear translocation, in LPS-treated cells, of the NF-κB subunits p50 and p65 was reduced ≥50% in the presence of LL-37, demonstrating that the peptide altered gene expression in part by acting directly on the TLR-to-NF-κB pathway. LL-37 almost completely prevented the release of TNF-α and other cytokines by human PBMC following stimulation with LPS and other TLR2/4 and TLR9 agonists, but not with cytokines TNF-α or IL-1β. Biochemical and inhibitor studies were consistent with a model whereby LL-37 modulated the inflammatory response to LPS/endotoxin and other agonists of TLR by a complex mechanism involving multiple points of intervention. We propose that the natural human host defense peptide LL-37 plays roles in the delicate balancing of inflammatory responses in homeostasis as well as in combating sepsis induced by certain TLR agonists.


Journal of Immunology | 2004

The Cationic Antimicrobial Peptide LL-37 Modulates Dendritic Cell Differentiation and Dendritic Cell-Induced T Cell Polarization

Donald J. Davidson; Andrew J. Currie; Gregor S. D. Reid; Dawn M. E. Bowdish; Kelly L. MacDonald; Rebecca C. Ma; Robert E. W. Hancock; David P. Speert

Dendritic cells (DC) are instrumental in orchestrating an appropriately polarized Th cell response to pathogens. DC exhibit considerable phenotypic and functional plasticity, influenced by lineage, Ag engagement, and the environment in which they develop and mature. In this study, we identify the human cationic peptide LL-37, found in abundance at sites of inflammation, as a potent modifier of DC differentiation, bridging innate and adaptive immune responses. LL-37-derived DC displayed significantly up-regulated endocytic capacity, modified phagocytic receptor expression and function, up-regulated costimulatory molecule expression, enhanced secretion of Th-1 inducing cytokines, and promoted Th1 responses in vitro. LL-37 may be an attractive therapeutic candidate for manipulating T cell polarization by DC.


Journal of Leukocyte Biology | 2005

Impact of LL-37 on anti-infective immunity.

Dawn M. E. Bowdish; Donald J. Davidson; Y. Elaine Lau; Ken Lee; Monisha G. Scott; Robert E. W. Hancock

Host defense peptides (often called cationic antimicrobial peptides) have pleiotropic immunomodulatory functions. The human host defense peptide LL‐37 is up‐regulated at sites of infection and has little or no antimicrobial activity in tissue‐culture media but under the same conditions, demonstrates immunomodulatory effects on epithelial cells, monocytes, and dendritic cells (DC). These effects include the induction of chemokine production in a mitogen‐activated protein kinase‐dependent manner in epithelial cell lines and monocytes and profound alterations of DC differentiation, resulting in the capacity to enhance a T helper cell type 1 response. Although the exact mechanisms of interaction between LL‐37 and these cell types have not been elucidated, there is evidence for specific (i.e., receptor‐mediated) and nonspecific interactions. The relative significance of the direct antimicrobial activities and immunomodulatory properties of LL‐37 and other cationic host defense peptides in host defense remains unresolved. To demonstrate that antimicrobial activity was not necessarily required for protection in vivo, model peptides were synthesized and tested for antimicrobial and immunomodulatory activities. A peptide with no antimicrobial activity was found to be protective in animal models of Staphylococcus aureus and Salmonella infection, implying that a host defense peptide can protect by exerting immunomodulatory properties.


Current Protein & Peptide Science | 2005

A Re-evaluation of the Role of Host Defence Peptides in Mammalian Immunity

Dawn M. E. Bowdish; Donald J. Davidson; Robert E. W. Hancock

Host defence peptides are found in all classes of life and are a fundamental component of the innate immune response. Initially it was believed that their sole role in innate immunity was to kill invading microorganisms, thus providing direct defence against infection. Evidence now suggests that these peptides play diverse and complex roles in the immune response and that, in higher animals, their functions are not restricted to the innate immune response. In in vitro experiments certain host defence peptides have been demonstrated to be potent antimicrobial agents at modest concentrations, although their antimicrobial activity is often strongly reduced or ablated in the presence of physiological concentrations of ions such as Na(+) and Mg(2+). In contrast, in experiments done in standard tissue culture media, the composition of which more accurately represents physiological levels of ions, mammalian host defence peptides have been demonstrated to have a number of immunomodulatory functions including altering host gene expression, acting as chemokines and/or inducing chemokine production, inhibiting lipopolysaccharide induced pro-inflammatory cytokine production, promoting wound healing, and modulating the responses of dendritic cells and cells of the adaptive immune response. Animal models indicate that host defence peptides are crucial for both prevention and clearance of infection. As interest in the in vivo functions of host defence peptides is increasing, it is important to consider whether in mammals the direct antimicrobial and immunomodulatory properties observed in vitro are physiologically relevant, especially since many of these activities are concentration dependent. In this review we summarize the concentrations of host defence peptides and ions reported throughout the body and compare that information with the concentrations of peptides that are known have antimicrobial or immunomodulatory functions in vitro.


Antimicrobial Agents and Chemotherapy | 2005

Immunomodulatory Activities of Small Host Defense Peptides

Dawn M. E. Bowdish; Donald J. Davidson; Monisha G. Scott; Robert E. W. Hancock

ABSTRACT Recent studies have demonstrated that in addition to their antimicrobial activity, cationic host defense peptides, like the human cathelicidin LL-37, perform many activities relating to innate immunity, including the induction or modulation of chemokine and cytokine production, alteration of gene expression in host cells, and inhibition of proinflammatory responses of host cells to bacterial components such as lipopolysaccharide (LPS) in vitro and in vivo. To investigate if these properties are shared by smaller peptides, two cathelicidin peptides derived from bovine neutrophils, the 13-mer indolicidin and Bac2A, a linear 12-amino-acid derivative of bactenecin, were compared to the 37-amino-acid peptide LL-37. Indolicidin, like LL-37, inhibited LPS-induced tumor necrosis factor alpha (TNF-α) secretion, even when added up to an hour after the addition of Escherichia coli O111:B4 LPS to the human macrophage/monocyte-like THP-1 cell line. In contrast, Bac2A demonstrated no significant antiendotoxin activity. At low concentrations, indolicidin and LL-37 acted synergistically to suppress LPS-induced production of TNF-α. Indolicidin was analogous to LL-37 in its ability to induce the production of the chemokine interleukin-8 (IL-8) in a human bronchial cell line, 16HBE14o−, but it was unable to induce production of IL-8 in THP-1 cells. In contrast, Bac2A was unable to induce IL-8 in either cell type. Conversely, Bac2A was chemotactic for THP-1 cells at concentrations between 10 and 100 μg/ml, while indolicidin and LL-37 were not chemotactic at these concentrations for THP-1 cells. This indicates that in addition to the potential for direct microbicidal activity, cationic host defense peptides may have diverse and complementary abilities to modulate the innate immune response.


Current Topics in Microbiology and Immunology | 2006

Immunomodulatory Properties of Defensins and Cathelicidins

Dawn M. E. Bowdish; Donald J. Davidson; Robert E. W. Hancock

Host defence peptides are a conserved component of the innate immune response in all complex life forms. In humans, the major classes of host defence peptides include the α- and β-defensins and the cathelicidin, hCAP-18/LL-37. These peptides are expressed in the granules of neutrophils and by a wide variety of tissue types. They have many roles in the immune response including both indirect and direct antimicrobial activity, the ability to act as chemokines as well as induce chemokine production leading to recruitment of leukocytes to the site of infection, the promotion of wound healing and an ability to modulate adaptive immunity. It appears that many of these properties are mediated though direct interaction of peptides with the cells of the innate immune response including monocytes, dendritic cells, T cells and epithelial cells. The importance of these peptides in immune responses has been demonstrated since animals defective in the expression of certain host defence peptides showgreater susceptibility to bacterial infections. In the very few instances in which human patients have been demonstrated to have defective host defence peptide expression, these individuals suffer from frequent infections. Although studies of the immunomodulatory properties of these peptides are in their infancy, there is a growing body of evidence suggesting that the immunomodulatory properties of these small, naturally occurring molecules might be harnessed for development as novel therapeutic agents.


Journal of Immunology | 2004

The Human Cationic Peptide LL-37 Induces Activation of the Extracellular Signal-Regulated Kinase and p38 Kinase Pathways in Primary Human Monocytes

Dawn M. E. Bowdish; Donald J. Davidson; David P. Speert; Robert E. W. Hancock

LL-37 is a cationic peptide that is found in the granules of neutrophils and is secreted by epithelial cells from a variety of tissues. Levels of LL-37 in vivo increase upon infection, and its production and secretion are increased upon stimulation with proinflammatory mediators. It has been postulated that LL-37 modulates the immune response by interacting with the effector cells of innate immunity; however, the mechanism of this interaction is unknown. LL-37 induced phosphorylation and activation of the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) and p38, in human peripheral blood-derived monocytes and a human bronchial epithelial cell line, but not in B or T lymphocytes. Phosphorylation was not dependent on the G protein-coupled formyl peptide-like receptor 1, which was previously proposed to be the receptor for LL-37-induced chemotaxis on human monocytes and T cells. Activation of ERK1/2 and p38 was markedly increased by the presence of GM-CSF, but not M-CSF. Exposure to LL-37 also led to the activation of Elk-1, a transcription factor that is downstream of and activated by phosphorylated ERK1/2, the up-regulation of various Elk-1-controlled genes, and the transcription and secretion of IL-8. Inhibition of either p38 or ERK1/2 kinases led to a reduction in LL-37-induced IL-8 secretion and inhibition of the transcription of various chemokine genes. The ability of LL-37 to signal through these pathways has broad implications in immunity, monocyte activation, proliferation, and differentiation.


PLOS Pathogens | 2009

MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis

Dawn M. E. Bowdish; Kaori Sakamoto; Mi-Jeong Kim; Mariliis Kroos; Subhankar Mukhopadhyay; Cynthia A. Leifer; Karl Tryggvason; Siamon Gordon; David G. Russell

Virtually all of the elements of Mycobacterium tuberculosis (Mtb) pathogenesis, including pro-inflammatory cytokine production, granuloma formation, cachexia, and mortality, can be induced by its predominant cell wall glycolipid, trehalose 6,6′-dimycolate (TDM/cord factor). TDM mediates these potent inflammatory responses via interactions with macrophages both in vitro and in vivo in a myeloid differentiation factor 88 (MyD88)-dependent manner via phosphorylation of the mitogen activated protein kinases (MAPKs), implying involvement of toll-like receptors (TLRs). However, specific TLRs or binding receptors for TDM have yet to be identified. Herein, we demonstrate that the macrophage receptor with collagenous structure (MARCO), a class A scavenger receptor, is utilized preferentially to “tether” TDM to the macrophage and to activate the TLR2 signaling pathway. TDM-induced signaling, as measured by a nuclear factor-kappa B (NF-κB)-luciferase reporter assay, required MARCO in addition to TLR2 and CD14. MARCO was used preferentially over the highly homologous scavenger receptor class A (SRA), which required TLR2 and TLR4, as well as their respective accessory molecules, in order for a slight increase in NF-κB signaling to occur. Consistent with these observations, macrophages from MARCO−/− or MARCO−/−SRA−/− mice are defective in activation of extracellular signal-related kinase 1/2 (ERK1/2) and subsequent pro-inflammatory cytokine production in response to TDM. These results show that MARCO-expressing macrophages secrete pro-inflammatory cytokines in response to TDM by cooperation between MARCO and TLR2/CD14, whereas other macrophage subtypes (e.g. bone marrow–derived) may rely somewhat less effectively on SRA, TLR2/CD14, and TLR4/MD2. Macrophages from MARCO−/− mice also produce markedly lower levels of pro-inflammatory cytokines in response to infection with virulent Mtb. These observations identify the scavenger receptors as essential binding receptors for TDM, explain the differential response to TDM of various macrophage populations, which differ in their expression of the scavenger receptors, and identify MARCO as a novel component required for TLR signaling.


Journal of Immunology | 2007

Host Defense Peptide LL-37, in Synergy with Inflammatory Mediator IL-1β, Augments Immune Responses by Multiple Pathways

Jie Yu; Neeloffer Mookherjee; Kathleen Wee; Dawn M. E. Bowdish; Jelena Pistolic; Yuexin Li; Linda Rehaume; Robert E. W. Hancock

The human cathelicidin LL-37 is a cationic host defense peptide and serves as an important component of innate immunity. It has been demonstrated to be a multifunctional modulator of innate immune responses, although the mechanism(s) underlying this have not been well characterized. In this study, it was demonstrated that LL-37 synergistically enhanced the IL-1β-induced production of cytokines (IL-6, IL-10) and chemokines such as macrophage chemoattractant proteins (MCP-1, MCP-3) in human PBMC, indicating a role in enhancing certain innate immune responses. Similarly, LL-37 synergistically enhanced chemokine production in the presence of GM-CSF, but IFN-γ, IL-4, or IL-12 addition led to antagonism, indicating that the role of LL-37 in reinforcing specific immune responses is selective and restricted to particular endogenous immune mediators. The inhibition of G protein-coupled receptors and PI3K substantially suppressed the ability of IL-1β and LL-37 to synergistically enhance the production of chemokine MCP-3. Consistent with this, the combination of IL-1β and LL-37 enhanced the activation/phosphorylation of kinase Akt and the transcription factor CREB. The role of transcription factor NF-κB was revealed through the demonstration of enhanced phosphorylation of IκBα and the consequent nuclear translocation of NF-κB subunits p50 and p65, as well as the antagonistic effects of an inhibitor of IκBα phosphorylation. These results together indicate that the human host defense peptide LL-37 can work in synergy with the endogenous inflammatory mediator IL-1β to enhance the induction of specific inflammatory effectors by a complex mechanism involving multiple pathways, thus reinforcing certain innate immune responses.

Collaboration


Dive into the Dawn M. E. Bowdish's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert E. W. Hancock

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge