Dawn R. D. Bignell
Memorial University of Newfoundland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dawn R. D. Bignell.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2008
Rosemary Loria; Dawn R. D. Bignell; Simon Moll; José C. Huguet-Tapia; Madhumita V. Joshi; Evan G. Johnson; Ryan F. Seipke; Donna M. Gibson
Streptomyces species are best known for their ability to produce a wide array of medically and agriculturally important secondary metabolites. However, there is a growing number of species which, like Streptomyces scabies, can function as plant pathogens and cause scab disease on economically important crops such as potato. All of these species produce the phytotoxin thaxtomin, a nitrated dipeptide which inhibits cellulose synthesis in expanding plant tissue. The biosynthesis of thaxtomin involves conserved non-ribosomal peptide synthetases, P450 monooxygenases, and a nitric oxide synthase, the latter being required for nitration of the toxin. This nitric oxide synthase is also responsible for the production of diffusible nitric oxide by scab-causing streptomycetes at the host-pathogen interface, suggesting that nitric oxide production might play an additional role during the infection process. The thaxtomin biosynthetic genes are transcriptionally regulated by an AraC/XylS family regulator, TxtR, which is conserved in pathogenic streptomycetes and is encoded within the thaxtomin biosynthetic gene cluster. The TxtR protein specifically binds cellobiose, a known inducer of thaxtomin biosynthesis, and cellobiose is required for expression of the biosynthetic genes. A second virulence gene in pathogenic Streptomyces species, nec1, encodes a novel secreted protein that may suppress plant defence responses. The thaxtomin biosynthetic genes and nec1 are contained on a large mobilizable pathogenicity island; the transfer of this island to recipient streptomycetes likely explains the rapid emergence of new pathogenic species. The newly available genome sequence of S. scabies will provide further insight into the mechanisms utilized by pathogenic streptomycetes during plant-microbe interactions.
Molecular Plant-microbe Interactions | 2010
Dawn R. D. Bignell; Ryan F. Seipke; José C. Huguet-Tapia; Alan H. Chambers; Ronald J. Parry; Rosemary Loria
Plant-pathogenic Streptomyces spp. cause scab disease on economically important root and tuber crops, the most important of which is potato. Key virulence determinants produced by these species include the cellulose synthesis inhibitor, thaxtomin A, and the secreted Nec1 protein that is required for colonization of the plant host. Recently, the genome sequence of Streptomyces scabies 87-22 was completed, and a biosynthetic cluster was identified that is predicted to synthesize a novel compound similar to coronafacic acid (CFA), a component of the virulence-associated coronatine phytotoxin produced by the plant-pathogenic bacterium Pseudomonas syringae. Southern analysis indicated that the cfa-like cluster in S. scabies 87-22 is likely conserved in other strains of S. scabies but is absent from two other pathogenic streptomycetes, S. turgidiscabies and S. acidiscabies. Transcriptional analyses demonstrated that the cluster is expressed during plant-microbe interactions and that expression requires a transcriptional regulator embedded in the cluster as well as the bldA tRNA. A knockout strain of the biosynthetic cluster displayed a reduced virulence phenotype on tobacco seedlings compared with the wild-type strain. Thus, the cfa-like biosynthetic cluster is a newly discovered locus in S. scabies that contributes to host-pathogen interactions.
Molecular Microbiology | 2007
Madhumita V. Joshi; Dawn R. D. Bignell; Evan G. Johnson; Jed P. Sparks; Donna M. Gibson; Rosemary Loria
Streptomyces scabies is the best studied of those streptomycetes that cause an economically important disease known as potato scab. The phytotoxin thaxtomin is made exclusively by these pathogens and is required for virulence. Here we describe regulation of thaxtomin biosynthesis by TxtR, a member of the AraC/XylS family of transcriptional regulators. The txtR gene is imbedded in the thaxtomin biosynthetic pathway and is located on a conserved pathogenicity island in S. scabies, S. turgidiscabies and S. acidiscabies. Thaxtomin biosynthesis was abolished and virulence was almost eliminated in the txtR deletion mutant of S. scabies 87.22. Accumulation of thaxtomin biosynthetic gene (txtA, txtB, txtC, nos) transcripts was reduced compared with the wild‐type S. scabies 87.22. NOS‐dependent nitric oxide production by S. scabies was also reduced in the mutant. The TxtR protein bound cellobiose, an inducer of thaxtomin production, and transcription of txtR and thaxtomin biosynthetic genes was upregulated in response to cellobiose. TxtR is the first example of an AraC/XylS family protein regulated by cellobiose. Together, these data suggest that cellobiose, the smallest oligomer of cellulose, may signal the availability of expanding plant tissue, which is the site of action of thaxtomin.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2010
Dawn R. D. Bignell; José C. Huguet-Tapia; Madhumita V. Joshi; Gregg S. Pettis; Rosemary Loria
Plant pathogenicity is rare in the genus Streptomyces, with only a dozen or so species possessing this trait out of the more than 900 species described. Nevertheless, such species have had a significant impact on agricultural economies throughout the world due to their ability to cause important crop diseases such as potato common scab, which is characterized by lesions that form on the potato tuber surface. All pathogenic species that cause common scab produce a family of phytotoxins called the thaxtomins, which function as cellulose synthesis inhibitors. In addition, the nec1 and tomA genes are conserved in several pathogenic streptomycetes, the former of which is predicted to function in the suppression of plant defense responses. Streptomyces scabies is the oldest plant pathogen described and has a world-wide distribution, whereas species such as S. turgidiscabies and S. acidiscabies are believed to be newly emergent pathogens found in more limited geographical locations. The genome sequence of S. scabies 87-22 was recently completed, and comparative genomic analyses with other sequenced microbial pathogens have revealed the presence of additional genes that may play a role in plant pathogenicity, an idea that is supported by functional analysis of one such putative virulence locus. In addition, the availability of multiple genome sequences for both pathogenic and nonpathogenic streptomycetes has provided an opportunity for comparative genomic analyses to identify the Streptomyces pathogenome. Such genomic analyses will contribute to the fundamental understanding of the mechanisms and evolution of plant pathogenicity and plant-microbe biology within this genus.
Antimicrobial Agents and Chemotherapy | 2005
Dawn R. D. Bignell; Kapil Tahlan; Kimberley R. Colvin; Susan E. Jensen; Brenda K. Leskiw
ABSTRACT In Streptomyces coelicolor, bldG encodes a putative anti-anti-sigma factor that regulates both aerial hypha formation and antibiotic production, and a downstream transcriptionally linked open reading frame (orf3) encodes a putative anti-sigma factor protein. A cloned DNA fragment from Streptomyces clavuligerus contained an open reading frame that encoded a protein showing 92% identity to the S. coelicolor BldG protein and 91% identity to the BldG ortholog in Streptomyces avermitilis. Sequencing of the region downstream of bldG in S. clavuligerus revealed the presence of an open reading frame encoding a protein showing 72 and 69% identity to the ORF3 proteins in S. coelicolor and S. avermitilis, respectively. Northern analysis indicated that, as in S. coelicolor, the S. clavuligerus bldG gene is expressed as both a monocistronic and a polycistronic transcript, the latter including the downstream orf3 gene. High-resolution S1 nuclease mapping of S. clavuligerus bldG transcripts revealed the presence of three bldG-specific promoters, and analysis of expression of a bldGp-egfp reporter indicated that the bldG promoter is active at various stages of development and in both substrate and aerial hyphae. A bldG null mutant was defective in both morphological differentiation and in the production of secondary metabolites, such as cephamycin C, clavulanic acid, and the 5S clavams. This inability to produce cephamycin C and clavulanic acid was due to the absence of the CcaR transcriptional regulator, which controls the expression of biosynthetic genes for both secondary metabolites as well as the expression of a second regulator of clavulanic acid biosynthesis, ClaR. This makes bldG the first regulatory protein identified in S. clavuligerus that functions upstream of CcaR and ClaR in a regulatory cascade to control secondary metabolite production.
Molecular Microbiology | 2009
Evan G. Johnson; Stuart B. Krasnoff; Dawn R. D. Bignell; Wen-Chuan Chung; Tao Tao; Ronald J. Parry; Rosemary Loria; Donna M. Gibson
Thaxtomin A, a cyclic dipeptide with a nitrated tryptophan moiety, is a phytotoxic pathogenicity determinant in scab‐causing Streptomyces species that inhibits cellulose synthesis by an unknown mechanism. Thaxtomin A is produced by the action of two non‐ribosomal peptide synthetase modules (TxtA and TxtB) and a complement of modifying enzymes, although the order of biosynthesis has not yet been determined. Analysis of a thaxtomin dual module knockout mutant and single module knockout mutants revealed that 4‐nitrotryptophan is an intermediate in thaxtomin A biosynthesis prior to backbone assembly. The 4‐nitrotryptophan represents a novel substrate for non‐ribosomal peptide synthetases. Through identification of N‐methyl‐4‐nitrotryptophan in a single module knockout and the use of adenylation domain specificity prediction software, TxtB was identified as the non‐ribosomal peptide synthetase module specific for 4‐nitrotryptophan.
Journal of Applied Microbiology | 2014
Dawn R. D. Bignell; J.K. Fyans; Z. Cheng
Streptomyces is a large genus consisting of soil‐dwelling, filamentous bacteria that are best known for their capability of producing a vast array of medically and agriculturally useful secondary metabolites. In addition, a small number of Streptomyces spp. are capable of colonizing and infecting the underground portions of living plants and causing economically important crop diseases such as potato common scab (CS). Research into the mechanisms of Streptomyces plant pathogenicity has led to the identification and characterization of several phytotoxic secondary metabolites that are known or suspected of contributing to diseases in various plants. The best characterized are the thaxtomin phytotoxins, which play a critical role in the development of CS, acid scab and soil rot of sweet potato. In addition, the best‐characterized CS‐causing pathogen, Streptomyces scabies, produces a molecule that is predicted to resemble the Pseudomonas syringae coronatine phytotoxin and which contributes to seedling disease symptom development. Other Streptomyces phytotoxic secondary metabolites that have been identified include concanamycins, FD‐891 and borrelidin. Furthermore, there is evidence that additional, unknown metabolites may participate in Streptomyces plant pathogenicity. Such revelations have implications for the rational development of better management procedures for controlling CS and other Streptomyces plant diseases.
Molecular Plant Pathology | 2013
Joanna K. Fyans; Dawn R. D. Bignell; Rosemary Loria; Ian K. Toth; Tracy Palmer
Streptomyces scabies is a model organism for the investigation of plant-microbe interactions in Gram-positive bacteria. Here, we investigate the type VII protein secretion system (T7SS) in S. scabies; the T7SS is required for the virulence of other Gram-positive bacteria, including Mycobacterium tuberculosis and Staphylococcus aureus. The hallmarks of a functional T7SS are an EccC protein that forms an essential component of the secretion apparatus and two small, sequence-related substrate proteins, EsxA and EsxB. A putative transmembrane protein, EccD, may also be associated with T7S in Actinobacteria. In this study, we constructed strains of the plant pathogen S. scabies carrying marked mutations in genes coding for EccC, EccD, EsxA and EsxB. Unexpectedly, we showed that all four mutant strains retain full virulence towards several plant hosts. However, disruption of the esxA or esxB, but not eccC or eccD, genes affects S. scabies development, including a delay in sporulation, abnormal spore chains and resistance to lysis by the Streptomyces-specific phage ϕC31. We further showed that these phenotypes are specific to the loss of the T7SS substrate proteins EsxA and EsxB, and are not observed when components of the T7SS secretion machinery are lacking. Taken together, these results imply an unexpected intracellular role for EsxA and EsxB.
Molecular Plant-microbe Interactions | 2015
Joanna K. Fyans; Mead S. Altowairish; Yuting Li; Dawn R. D. Bignell
Streptomyces scabies is an important causative agent of common scab disease of potato tubers and other root crops. The primary virulence factor produced by this pathogen is a phytotoxic secondary metabolite called thaxtomin A, which is essential for disease development. In addition, the genome of S. scabies harbors a virulence-associated biosynthetic gene cluster called the coronafacic acid (CFA)-like gene cluster, which was previously predicted to produce metabolites that resemble the Pseudomonas syringae coronatine (COR) phytotoxin. COR consists of CFA linked to an ethylcyclopropyl amino acid called coronamic acid, which is derived from L-allo-isoleucine. Using a combination of genetic and chemical analyses, we show that the S. scabies CFA-like gene cluster is responsible for producing CFA-L-isoleucine as the major product as well as other minor COR-like metabolites. Production of the metabolites was shown to require the cfl gene, which is located within the CFA-like gene cluster and encodes an enzyme involved in ligating CFA to its amino acid partner. CFA-L-isoleucine purified from S. scabies cultures was shown to exhibit bioactivity similar to that of COR, though it was found to be less toxic than COR. This is the first report demonstrating the production of coronafacoyl phytotoxins by S. scabies, which is the most prevalent scab-causing pathogen in North America.
Journal of Bacteriology | 2009
Archana Parashar; Kimberley R. Colvin; Dawn R. D. Bignell; Brenda K. Leskiw
The similarity of BldG and the downstream coexpressed protein SCO3548 to anti-anti-sigma and anti-sigma factors, respectively, together with the phenotype of a bldG mutant, suggests that BldG and SCO3548 interact as part of a regulatory system to control both antibiotic production and morphological differentiation in Streptomyces coelicolor. A combination of bacterial two-hybrid, affinity purification, and far-Western analyses demonstrated that there was self-interaction of both BldG and SCO3548, as well as a direct interaction between the two proteins. Furthermore, a genetic complementation experiment demonstrated that SCO3548 antagonizes the function of BldG, similar to other anti-anti-sigma/anti-sigma factor pairs. It is therefore proposed that BldG and SCO3548 form a partner-switching pair that regulates the function of one or more sigma factors in S. coelicolor. The conservation of bldG and sco3548 in other streptomycetes demonstrates that this system is likely a key regulatory switch controlling developmental processes throughout the genus Streptomyces.