Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kapil Tahlan is active.

Publication


Featured researches published by Kapil Tahlan.


Journal of Biological Chemistry | 2008

Biosynthesis and Recycling of Nicotinamide Cofactors in Mycobacterium tuberculosis AN ESSENTIAL ROLE FOR NAD IN NONREPLICATING BACILLI

Helena I. Boshoff; Xia Xu; Kapil Tahlan; Cynthia S. Dowd; Kevin Pethe; Luis R. Camacho; Tae-Ho Park; Chang-Soo Yun; Dirk Schnappinger; Sabine Ehrt; Kerstin J. Williams; Clifton E. Barry

Despite the presence of genes that apparently encode NAD salvage-specific enzymes in its genome, it has been previously thought that Mycobacterium tuberculosis can only synthesize NAD de novo. Transcriptional analysis of the de novo synthesis and putative salvage pathway genes revealed an up-regulation of the salvage pathway genes in vivo and in vitro under conditions of hypoxia. [14C]Nicotinamide incorporation assays in M. tuberculosis isolated directly from the lungs of infected mice or from infected macrophages revealed that incorporation of exogenous nicotinamide was very efficient in in vivo-adapted cells, in contrast to cells grown aerobically in vitro. Two putative nicotinic acid phosphoribosyltransferases, PncB1 (Rv1330c) and PncB2 (Rv0573c), were examined by a combination of in vitro enzymatic activity assays and allelic exchange studies. These studies revealed that both play a role in cofactor salvage. Mutants in the de novo pathway died upon removal of exogenous nicotinamide during active replication in vitro. Cell death is induced by both cofactor starvation and disruption of cellular redox homeostasis as electron transport is impaired by limiting NAD. Inhibitors of NAD synthetase, an essential enzyme common to both recycling and de novo synthesis pathways, displayed the same bactericidal effect as sudden NAD starvation of the de novo pathway mutant in both actively growing and nonreplicating M. tuberculosis. These studies demonstrate the plasticity of the organism in maintaining NAD levels and establish that the two enzymes of the universal pathway are attractive chemotherapeutic targets for active as well as latent tuberculosis.


Journal of Molecular Biology | 2008

Crystal structures of the Streptomyces coelicolor TetR-like protein ActR alone and in complex with actinorhodin or the actinorhodin biosynthetic precursor (S)-DNPA.

A.R. Willems; Kapil Tahlan; T. Taguchi; Kun Zhang; Z.Z. Lee; K. Ichinose; Murray S. Junop; Justin R. Nodwell

Actinorhodin, an antibiotic produced by Streptomyces coelicolor, is exported from the cell by the ActA efflux pump. actA is divergently transcribed from actR, which encodes a TetR-like transcriptional repressor. We showed previously that ActR represses transcription by binding to an operator from the actA/actR intergenic region. Importantly, actinorhodin itself or various actinorhodin biosynthetic intermediates can cause ActR to dissociate from its operator, leading to derepression. This suggests that ActR may mediate timely self-resistance to an endogenously produced antibiotic by responding to one of its biosynthetic precursors. Here, we report the structural basis for this precursor-mediated derepression with crystal structures of homodimeric ActR by itself and in complex with either actinorhodin or the actinorhodin biosynthetic intermediate (S)-DNPA [4-dihydro-9-hydroxy-1-methyl-10-oxo-3-H-naphtho-[2,3-c]-pyran-3-(S)-acetic acid]. The ligand-binding tunnel in each ActR monomer has a striking hydrophilic/hydrophobic/hydrophilic arrangement of surface residues that accommodate either one hexacyclic actinorhodin molecule or two back-to-back tricyclic (S)-DNPA molecules. Moreover, our work also reveals the strongest structural evidence to date that TetR-mediated antibiotic resistance may have been acquired from an antibiotic-producer organism.


Antimicrobial Agents and Chemotherapy | 2004

Two Sets of Paralogous Genes Encode the Enzymes Involved in the Early Stages of Clavulanic Acid and Clavam Metabolite Biosynthesis in Streptomyces clavuligerus

Kapil Tahlan; Hyeon Ung Park; Annie Wong; Perrin H. Beatty; Susan E. Jensen

ABSTRACT Recently, a second copy of a gene encoding proclavaminate amidinohydrolase (pah1), an enzyme involved in the early stages of clavulanic acid and clavam metabolite biosynthesis in Streptomyces clavuligerus, was identified and isolated. Using Southern analysis, we have now isolated second copies of the genes encoding the carboxyethylarginine synthase (ceaS) and β-lactam synthetase (bls) enzymes. These new paralogues are given the gene designations ceaS1 and bls1 and are located immediately upstream of pah1 on the chromosome. Furthermore, sequence analysis of the region downstream of pah1 revealed a second copy of a gene encoding ornithine acetyltransferase (oat1), thus indicating the presence of a cluster of paralogue genes. ceaS1, bls1, and oat1 display 73, 60, and 63% identities, respectively, at the nucleotide level to the original ceaS2, bls2, and oat2 genes from the clavulanic acid gene cluster. Single mutants defective in ceaS1, bls1, or oat1 were prepared and characterized and were found to be affected to variable degrees in their ability to produce clavulanic acid and clavam metabolites. Double mutants defective in both copies of the genes were also prepared and tested. The ceaS1/ceaS2 and the bls1/bls2 mutant strains were completely blocked in clavulanic acid and clavam metabolite biosynthesis. On the other hand, oat1/oat2 double mutants still produced some clavulanic acid and clavam metabolites. This may be attributed to the presence of the argJ gene in S. clavuligerus, which encodes yet another ornithine acetyltransferase enzyme that may be able to compensate for the lack of OAT1 and -2 in the double mutants.


Antimicrobial Agents and Chemotherapy | 2005

Expression of ccaR, Encoding the Positive Activator of Cephamycin C and Clavulanic Acid Production in Streptomyces clavuligerus, Is Dependent on bldG

Dawn R. D. Bignell; Kapil Tahlan; Kimberley R. Colvin; Susan E. Jensen; Brenda K. Leskiw

ABSTRACT In Streptomyces coelicolor, bldG encodes a putative anti-anti-sigma factor that regulates both aerial hypha formation and antibiotic production, and a downstream transcriptionally linked open reading frame (orf3) encodes a putative anti-sigma factor protein. A cloned DNA fragment from Streptomyces clavuligerus contained an open reading frame that encoded a protein showing 92% identity to the S. coelicolor BldG protein and 91% identity to the BldG ortholog in Streptomyces avermitilis. Sequencing of the region downstream of bldG in S. clavuligerus revealed the presence of an open reading frame encoding a protein showing 72 and 69% identity to the ORF3 proteins in S. coelicolor and S. avermitilis, respectively. Northern analysis indicated that, as in S. coelicolor, the S. clavuligerus bldG gene is expressed as both a monocistronic and a polycistronic transcript, the latter including the downstream orf3 gene. High-resolution S1 nuclease mapping of S. clavuligerus bldG transcripts revealed the presence of three bldG-specific promoters, and analysis of expression of a bldGp-egfp reporter indicated that the bldG promoter is active at various stages of development and in both substrate and aerial hyphae. A bldG null mutant was defective in both morphological differentiation and in the production of secondary metabolites, such as cephamycin C, clavulanic acid, and the 5S clavams. This inability to produce cephamycin C and clavulanic acid was due to the absence of the CcaR transcriptional regulator, which controls the expression of biosynthetic genes for both secondary metabolites as well as the expression of a second regulator of clavulanic acid biosynthesis, ClaR. This makes bldG the first regulatory protein identified in S. clavuligerus that functions upstream of CcaR and ClaR in a regulatory cascade to control secondary metabolite production.


Journal of Molecular Biology | 2008

Ligand recognition by ActR, a TetR-like regulator of actinorhodin export.

Kapil Tahlan; Zhou Yu; Ye Xu; Alan R. Davidson; Justin R. Nodwell

TetR-like transcriptional repressors interact with small-molecule ligands to control many facets of prokaryotic biology, including clinical antibiotic resistance. ActR is a TetR-like protein encoded in the biosynthetic gene cluster for the antibiotic actinorhodin and controls the expression of two actinorhodin exporters. We showed previously that actinorhodin and its precursor 4-dihydro-9-hydroxy-1-methyl-10-oxo-3-H-naphtho-[2,3-c]-pyran-3-(S)-acetic acid can bind ActR and prevent its interaction with DNA. Here, we compare ActRs interaction with naturally occurring and synthetic molecules to show that pathway intermediates bind to ActR 5- to 10-fold more tightly than actinorhodin itself, consistent with our suggestion that they are the biologically relevant triggers for actinorhodin export. We also find that the ligand-binding cavity of this protein can accommodate a surprisingly large diversity of ligands, many of which can release ActR from DNA in vitro and in vivo. These data suggest that the actR locus could be activated by, and perhaps adapted to confer resistance to other antibiotics.


Mbio | 2012

A Two-Step Mechanism for the Activation of Actinorhodin Export and Resistance in Streptomyces coelicolor

Ye Xu; Andrew Willems; Catherine Au-yeung; Kapil Tahlan; Justin R. Nodwell

ABSTRACT Many microorganisms produce secondary metabolites that have antibiotic activity. To avoid self-inhibition, the producing cells often encode cognate export and/or resistance mechanisms in the biosynthetic gene clusters for these molecules. Actinorhodin is a blue-pigmented antibiotic produced by Streptomyces coelicolor. The actAB operon, carried in the actinorhodin biosynthetic gene cluster, encodes two putative export pumps and is regulated by the transcriptional repressor protein ActR. In this work, we show that normal actinorhodin yields require actAB expression. Consistent with previous in vitro work, we show that both actinorhodin and its 3-ring biosynthetic intermediates [e.g., (S)-DNPA] can relieve repression of actAB by ActR in vivo. Importantly, an ActR mutant that interacts productively with (S)-DNPA but not with actinorhodin responds to the actinorhodin biosynthetic pathway with the induction of actAB and normal yields of actinorhodin. This suggests that the intermediates are sufficient to trigger the export genes in actinorhodin-producing cells. We further show that actinorhodin-producing cells can induce actAB expression in nonproducing cells; however, in this case actinorhodin is the most important signal. Finally, while the “intermediate-only” ActR mutant permits sufficient actAB expression for normal actinorhodin yields, this expression is short-lived. Sustained culture-wide expression requires a subsequent actinorhodin-mediated signaling step, and the defect in this response causes widespread cell death. These results are consistent with a two-step model for actinorhodin export and resistance where intermediates trigger initial expression for export from producing cells and actinorhodin then triggers sustained export gene expression that confers culture-wide resistance. IMPORTANCE Understanding the links between antibiotic resistance and biosynthesis is important for our efforts to manipulate secondary metabolism. For example, many secondary metabolites are produced at low levels; our work suggests that manipulating export might be one way to enhance yields of these molecules. It also suggests that understanding resistance will be relevant to the generation of novel secondary metabolites through the creation of synthetic secondary metabolic gene clusters. Finally, these cognate resistance mechanisms are related to mechanisms that arise in pathogenic bacteria, and understanding them is relevant to our ability to control microbial infections clinically. Understanding the links between antibiotic resistance and biosynthesis is important for our efforts to manipulate secondary metabolism. For example, many secondary metabolites are produced at low levels; our work suggests that manipulating export might be one way to enhance yields of these molecules. It also suggests that understanding resistance will be relevant to the generation of novel secondary metabolites through the creation of synthetic secondary metabolic gene clusters. Finally, these cognate resistance mechanisms are related to mechanisms that arise in pathogenic bacteria, and understanding them is relevant to our ability to control microbial infections clinically.


Journal of Bacteriology | 2004

The Paralogous Pairs of Genes Involved in Clavulanic Acid and Clavam Metabolite Biosynthesis Are Differently Regulated in Streptomyces clavuligerus

Kapil Tahlan; Cecilia Anders; Susan E. Jensen

Carboxyethylarginine synthase, encoded by the paralogous ceaS1 and ceaS2 genes, catalyzes the first reaction in the shared biosynthetic pathway leading to clavulanic acid and the other clavam metabolites in Streptomyces clavuligerus. The nutritional regulation of ceaS1 and ceaS2 expression was analyzed by reverse transcriptase PCR and by the use of the enhanced green fluorescent protein-encoding gene (egfp) as a reporter. ceaS1 was transcribed in complex soy medium only, whereas ceaS2 was transcribed in both soy and defined starch-asparagine (SA) media. The transcriptional start points of the two genes were also mapped to a C residue 98 bp upstream of ceaS1 and a G residue 51 bp upstream of the ceaS2 start codon by S1 nuclease protection and primer extension analyses. Furthermore, transcriptional mapping of the genes encoding the beta-lactam synthetase (bls1) and proclavaminate amidinohydrolase (pah1) isoenzymes from the paralogue gene cluster indicated that a single polycistronic transcript of approximately 4.9 kb includes ceaS1, bls1, and pah1. The expression of ceaS1 and ceaS2 in a mutant strain defective in the regulatory protein CcaR was also examined. ceaS1 transcription was not affected in the ccaR mutant, whereas that of ceaS2 was greatly reduced compared to the wild-type strain. Overall, our results suggest that different mechanisms are involved in regulating the expression of ceaS1 and ceaS2, and presumably also of other paralogous genes that encode proteins involved in the early stages of clavulanic acid and clavam metabolite biosynthesis.


The Journal of Antibiotics | 2013

Origins of the β-lactam rings in natural products

Kapil Tahlan; Susan E. Jensen

Naturally occurring β-lactam compounds fall into four basic structural groups, the penicillins/cephalosporins, the clavams, the carbapenems and the monocyclic β-lactams. Biosynthetic studies have clarified the steps involved in the formation of the β-lactam ring for the first three of these groups, but the corresponding process or processes for the monocyclic β-lactams remains obscure. Isopenicillin N synthase is responsible for formation of the β-lactam ring in all penicillin/cephalosporin compounds, and the reaction catalyzed is completely separate from that of β-lactam synthetase, the enzyme responsible for ring formation in all clavam compounds. Conversely, carbapenam synthetase, the enzyme responsible for β-lactam ring formation for all carbapenem compounds, shows clear relatedness to β-lactam synthetase, despite differences in the substrates and the products for the two enzymes. The mechanism of ring formation has not yet been clarified for any of the monocyclic β-lactams, but a third distinct mechanism of β-lactam ring formation seems likely, and this group includes such a diverse collection of structures that even more new ring-forming reactions may be involved.


Journal of Bacteriology | 2007

Investigation of Transcription Repression and Small-Molecule Responsiveness by TetR-Like Transcription Factors Using a Heterologous Escherichia coli-Based Assay

Sang Kyun Ahn; Kapil Tahlan; Zhou Yu; Justin R. Nodwell

The SCO7222 protein and ActR are two of approximately 150 TetR-like transcription factors encoded in the Streptomyces coelicolor genome. Using bioluminescence as a readout, we have developed Escherichia coli-based biosensors that accurately report the regulatory activity of these proteins and used it to investigate their interactions with DNA and small-molecule ligands. We found that the SCO7222 protein and ActR repress the expression of their putative target genes, SCO7223 and actII-ORF2 (actA), respectively, by interacting with operator sequence in the promoters. The operators recognized by the two proteins are related such that O(7223) (an operator for SCO7223) could be bound by both the SCO7222 protein and ActR with similar affinities. In contrast, O(act) (an operator for actII-ORF2) was bound tightly by ActR and more weakly by the SCO7222 protein. We demonstrated ligand specificity of these proteins by showing that while TetR (but not ActR or the SCO7222 protein) interacts with tetracyclines, ActR (but not TetR or the SCO7222 protein) interacts with actinorhodin and related molecules. Through operator-targeted mutagenesis, we found that at least two nucleotide changes in O(7223) were required to disrupt its interaction with SCO7222 protein, while ActR was more sensitive to changes on O(act). Most importantly, we found that the interaction of each protein with wild-type and mutant operator sequences in vivo and in vitro correlated perfectly. Our data suggest that E. coli-based biosensors of this type should be broadly applicable to TetR-like transcription factors.


PLOS ONE | 2011

Bacterial Transmembrane Proteins that Lack N-Terminal Signal Sequences

Arryn Craney; Kapil Tahlan; David W. Andrews; Justin R. Nodwell

Tail-anchored membrane proteins (TAMPs), a class of proteins characterized by their lack of N-terminal signal sequence and Sec-independent membrane targeting, play critical roles in apoptosis, vesicle trafficking and other vital processes in eukaryotic organisms. Until recently, this class of membrane proteins has been unknown in bacteria. Here we present the results of bioinformatic analysis revealing proteins that are superficially similar to eukaryotic TAMPs in the bacterium Streptomyces coelicolor. We demonstrate that at least four of these proteins are bona fide membrane-spanning proteins capable of targeting to the membrane in the absence of their N-terminus and the C-terminal membrane-spanning domain is sufficient for membrane targeting. Several of these proteins, including a serine/threonine kinase and the SecE component of the Sec translocon, are widely conserved in bacteria.

Collaboration


Dive into the Kapil Tahlan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn R. D. Bignell

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

G.P. Keefe

University of Prince Edward Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fraser W. Davidson

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge