Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dayna M. Harhay is active.

Publication


Featured researches published by Dayna M. Harhay.


Genome Biology | 2013

Reducing assembly complexity of microbial genomes with single-molecule sequencing.

Sergey Koren; Gregory P. Harhay; T. P. L. Smith; James L. Bono; Dayna M. Harhay; Scott McVey; Diana Radune; Nicholas H. Bergman; Adam M. Phillippy

BackgroundThe short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem.ResultsTo measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads.ConclusionsAutomated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to


Applied and Environmental Microbiology | 2010

Animal-to-animal variation in fecal microbial diversity among beef cattle.

Lisa M. Durso; Gregory P. Harhay; T. P. L. Smith; James L. Bono; Todd Z. DeSantis; Dayna M. Harhay; Gary L. Andersen; James E. Keen; William W. Laegreid; Michael L. Clawson

1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.


Journal of Food Protection | 2012

Biofilm Formation by Shiga Toxin–Producing Escherichia coli O157:H7 and Non-O157 Strains and Their Tolerance to Sanitizers Commonly Used in the Food Processing Environment†

Rong Wang; James L. Bono; Norasak Kalchayanand; S. D. Shackelford; Dayna M. Harhay

ABSTRACT The intestinal microbiota of beef cattle are important for animal health, food safety, and methane emissions. This full-length sequencing survey of 11,171 16S rRNA genes reveals animal-to-animal variation in communities that cannot be attributed to breed, gender, diet, age, or weather. Beef communities differ from those of dairy. Core bovine taxa are identified.


Journal of Food Protection | 2013

Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

Rong Wang; Norasak Kalchayanand; John W. Schmidt; Dayna M. Harhay

Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens. Among these, E. coli O157:H7 is the most frequently isolated STEC serotype responsible for foodborne diseases. However, the non-O157 serotypes have been associated with serious outbreaks and sporadic diseases as well. It has been shown that various STEC serotypes are capable of forming biofilms on different food or food contact surfaces that, when detached, may lead to cross-contamination. Bacterial cells at biofilm stage also are more tolerant to sanitizers compared with their planktonic counterparts, which makes STEC biofilms a serious food safety concern. In the present study, we evaluated the potency of biofilm formation by a variety of STEC strains from serotypes O157:H7, O26:H11, and O111:H8; we also compared biofilm tolerance with two types of common sanitizers, a quaternary ammonium chloride-based sanitizer and chlorine. Our results demonstrated that biofilm formation by various STEC serotypes on a polystyrene surface was highly strain-dependent, whereas the two non-O157 serotypes showed a higher potency of pellicle formation at air-liquid interfaces on a glass surface compared with serotype O157:H7. Significant reductions of viable biofilm cells were achieved with sanitizer treatments. STEC biofilm tolerance to sanitization was strain-dependent regardless of the serotypes. Curli expression appeared to play a critical role in STEC biofilm formation and tolerance to sanitizers. Our data indicated that multiple factors, including bacterial serotype and strain, surface materials, and other environmental conditions, could significantly affect STEC biofilm formation. The high potential for biofilm formation by various STEC serotypes, especially the strong potency of pellicle formation by the curli-positive non-O157 strains with high sanitization tolerance, might contribute to bacterial colonization on food contact surfaces, which may result in downstream product contamination.


Genome Announcements | 2013

Complete Closed Genome Sequences of Mannheimia haemolytica Serotypes A1 and A6, Isolated from Cattle

Gregory P. Harhay; Sergey Koren; Adam M. Phillippy; D. Scott McVey; Jennifer Kuszak; Michael L. Clawson; Dayna M. Harhay; Michael P. Heaton; Carol G. Chitko-McKown; T. P. L. Smith

Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.


American Journal of Veterinary Research | 2017

Comparison of the diagnostic performance of bacterial culture of nasopharyngeal swab and bronchoalveolar lavage fluid samples obtained from calves with bovine respiratory disease

Sarah F. Capik; Brad J. White; Brian V. Lubbers; Michael D. Apley; Keith D. DeDonder; Robert L. Larson; Greg P. Harhay; Carol G. Chitko-McKown; Dayna M. Harhay; Ted Kalbfleisch; Gennie Schuller; Michael L. Clawson

ABSTRACT Mannheimia haemolytica is a respiratory pathogen affecting cattle and related ruminants worldwide. M. haemolytica is commonly associated with bovine respiratory disease complex (BRDC), a polymicrobial multifactorial disease. We present the first two complete closed genome sequences of this species, determined using an automated assembly pipeline requiring no manual finishing.


Veterinary Microbiology | 2016

Observations on macrolide resistance and susceptibility testing performance in field isolates collected from clinical bovine respiratory disease cases

Keith D. DeDonder; Dayna M. Harhay; Michael D. Apley; Brian V. Lubbers; Michael L. Clawson; Gennie Schuller; Gregory P. Harhay; Brad J. White; Robert L. Larson; Sarah F. Capik; Jim E. Riviere; Ted Kalbfleisch; Ronald K. Tessman

OBJECTIVE To compare predictive values, extent of agreement, and gamithromycin susceptibility between bacterial culture results of nasopharyngeal swab (NPS) and bronchoalveolar lavage fluid (BALF) samples obtained from calves with bovine respiratory disease (BRD). ANIMALS 28 beef calves with clinical BRD. PROCEDURES Pooled bilateral NPS samples and BALF samples were obtained for bacterial culture from calves immediately before and at various times during the 5 days after gamithromycin (6 mg/kg, SC, once) administration. For each culture-positive sample, up to 12 Mannheimia haemolytica, 6 Pasteurella multocida, and 6 Histophilus somni colonies underwent gamithromycin susceptibility testing. Whole-genome sequencing was performed on all M haemolytica isolates. For paired NPS and BALF samples collected 5 days after gamithromycin administration, the positive and negative predictive values for culture results of NPS samples relative to those of BALF samples and the extent of agreement between the sampling methods were determined. RESULTS Positive and negative predictive values of NPS samples were 67% and 100% for M haemolytica, 75% and 100% for P multocida, and 100% and 96% for H somni. Extent of agreement between results for NPS and BALF samples was substantial for M haemolytica (κ, 0.71) and H somni (κ, 0.78) and almost perfect for P multocida (κ, 0.81). Gamithromycin susceptibility varied within the same sample and between paired NPS and BALF samples. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated culture results of NPS and BALF samples from calves with BRD should be interpreted cautiously considering disease prevalence within the population, sample collection relative to antimicrobial administration, and limitations of diagnostic testing methods.


Genome Announcements | 2014

Complete Closed Genome Sequences of Three Bibersteinia trehalosi Nasopharyngeal Isolates from Cattle with Shipping Fever

Gregory P. Harhay; D. S. McVey; Sergey Koren; Adam M. Phillippy; James L. Bono; Dayna M. Harhay; Michael L. Clawson; Michael P. Heaton; Carol G. Chitko-McKown; T. P. L. Smith

The objectives of this study were; first, to describe gamithromycin susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from cattle diagnosed with bovine respiratory disease (BRD) and previously treated with either gamithromycin for control of BRD (mass medication=MM) or sham-saline injected (control=CON); second, to describe the macrolide resistance genes present in genetically typed M. haemolytica isolates; third, use whole-genome sequencing (WGS) to correlate the phenotypic resistance and genetic determinants for resistance among M. haemolytica isolates. M. haemolytica (n=276), P. multocida (n=253), and H. somni (n=78) were isolated from feedlot cattle diagnosed with BRD. Gamithromycin susceptibility was determined by broth microdilution. Whole-genome sequencing was utilized to determine the presence/absence of macrolide resistance genes and to genetically type M. haemolytica. Generalized linear mixed models were built for analysis. There was not a significant difference between MM and CON groups in regards to the likelihood of culturing a resistant isolate of M. haemolytica or P. multocida. The likelihood of culturing a resistant isolate of M. haemolytica differed significantly by state of origin in this study. A single M. haemolytica genetic subtype was associated with an over whelming majority of the observed resistance. H. somni isolation counts were low and statistical models would not converge. Phenotypic resistance was predicted with high sensitivity and specificity by WGS. Additional studies to elucidate the relationships between phenotypic expression of resistance/genetic determinants for resistance and clinical response to antimicrobials are necessary to inform judicious use of antimicrobials in the context of relieving animal disease and suffering.


Genome Announcements | 2016

Complete Closed Genome Sequences of Salmonella enterica subsp. enterica Serotypes Anatum, Montevideo, Typhimurium, and Newport, Isolated from Beef, Cattle, and Humans

Dayna M. Harhay; James L. Bono; T. P. L. Smith; Patricia I. Fields; Blake A. Dinsmore; Monica Santovenia; Christy M. Kelley; Rong Wang; Gregory P. Harhay

ABSTRACT Bibersteinia trehalosi is a respiratory pathogen affecting cattle and related ruminants worldwide. B. trehalosi is closely related to Mannheimia haemolytica and is often associated with bovine respiratory disease complex (BRDC), a polymicrobial multifactorial disease. We present three complete closed genome sequences of this species generated using an automated assembly pipeline.


Genome Announcements | 2014

Complete Closed Genome Sequences of Four Mannheimia varigena Isolates from Cattle with Shipping Fever

Gregory P. Harhay; Robert W. Murray; Brian V. Lubbers; Dee Griffin; Sergey Koren; Adam M. Phillippy; Dayna M. Harhay; James L. Bono; Michael L. Clawson; Michael P. Heaton; Carol G. Chitko-McKown; T. P. L. Smith

ABSTRACT Salmonella enterica spp. are a diverse group of bacteria with a wide range of virulence potential. To facilitate genome comparisons across this virulence spectrum, we present eight complete closed genome sequences of four S. enterica serotypes (Anatum, Montevideo, Typhimurium, and Newport), isolated from various cattle samples and from humans.

Collaboration


Dive into the Dayna M. Harhay's collaboration.

Top Co-Authors

Avatar

Gregory P. Harhay

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

James L. Bono

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

T. P. L. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Rong Wang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Blake A. Dinsmore

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Santovenia

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Patricia I. Fields

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Christy M. Kelley

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge