Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory P. Harhay is active.

Publication


Featured researches published by Gregory P. Harhay.


Genome Biology | 2013

Reducing assembly complexity of microbial genomes with single-molecule sequencing.

Sergey Koren; Gregory P. Harhay; T. P. L. Smith; James L. Bono; Dayna M. Harhay; Scott McVey; Diana Radune; Nicholas H. Bergman; Adam M. Phillippy

BackgroundThe short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem.ResultsTo measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads.ConclusionsAutomated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to


Mammalian Genome | 2002

Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle

Michael P. Heaton; Gregory P. Harhay; G. L. Bennett; R. T. Stone; W. Michael Grosse; E. Casas; J. W. Keele; T. P. L. Smith; Carol G. Chitko-McKown; William W. Laegreid

1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.


Applied and Environmental Microbiology | 2010

Animal-to-animal variation in fecal microbial diversity among beef cattle.

Lisa M. Durso; Gregory P. Harhay; T. P. L. Smith; James L. Bono; Todd Z. DeSantis; Dayna M. Harhay; Gary L. Andersen; James E. Keen; William W. Laegreid; Michael L. Clawson

Abstract. DNA marker technology represents a promising means for determining the genetic identity and kinship of an animal. Compared with other types of DNA markers, single nucleotide polymorphisms (SNPs) are attractive because they are abundant, genetically stable, and amenable to high-throughput automated analysis. In cattle, the challenge has been to identify a minimal set of SNPs with sufficient power for use in a variety of popular breeds and crossbred populations. This report describes a set of 32 highly informative SNP markers distributed among 18 autosomes and both sex chromosomes. Informativity of these SNPs in U.S. beef cattle populations was estimated from the distribution of allele and genotype frequencies in two panels: one consisting of 96 purebred sires representing 17 popular breeds, and another with 154 purebred American Angus from six herds in four Midwestern states. Based on frequency data from these panels, the estimated probability that two randomly selected, unrelated individuals will possess identical genotypes for all 32 loci was 2.0 × 10−13 for multi-breed composite populations and 1.9 × 10−10 for purebred Angus populations. The probability that a randomly chosen candidate sire will be excluded from paternity was estimated to be 99.9% and 99.4% for the same respective populations. The DNA immediately surrounding the 32 target SNPs was sequenced in the 96 sires of the multi-breed panel and found to contain an additional 183 polymorphic sites. Knowledge of these additional sites, together with the 32 target SNPs, allows the design of robust, accurate genotype assays on a variety of high-throughput SNP genotyping platforms.


BMC Genomics | 2005

Linkage mapping bovine EST-based SNP

W. M. Snelling; E. Casas; R. T. Stone; J. W. Keele; Gregory P. Harhay; G. L. Bennett; T. P. L. Smith

ABSTRACT The intestinal microbiota of beef cattle are important for animal health, food safety, and methane emissions. This full-length sequencing survey of 11,171 16S rRNA genes reveals animal-to-animal variation in communities that cannot be attributed to breed, gender, diet, age, or weather. Beef communities differ from those of dairy. Core bovine taxa are identified.


Molecular Biology and Evolution | 2012

Phylogeny of Shiga Toxin-Producing Escherichia coli O157 Isolated from Cattle and Clinically Ill Humans

James L. Bono; T. P. L. Smith; James E. Keen; Gregory P. Harhay; Tara G. McDaneld; Robert E. Mandrell; Woo Kyung Jung; Thomas E. Besser; Peter Gerner-Smidt; Martina Bielaszewska; Helge Karch; Michael L. Clawson

BackgroundExisting linkage maps of the bovine genome primarily contain anonymous microsatellite markers. These maps have proved valuable for mapping quantitative trait loci (QTL) to broad regions of the genome, but more closely spaced markers are needed to fine-map QTL, and markers associated with genes and annotated sequence are needed to identify genes and sequence variation that may explain QTL.ResultsBovine expressed sequence tag (EST) and bacterial artificial chromosome (BAC)sequence data were used to develop 918 single nucleotide polymorphism (SNP) markers to map genes on the bovine linkage map. DNA of sires from the MARC reference population was used to detect SNPs, and progeny and mates of heterozygous sires were genotyped. Chromosome assignments for 861 SNPs were determined by twopoint analysis, and positions for 735 SNPs were established by multipoint analyses. Linkage maps of bovine autosomes with these SNPs represent 4585 markers in 2475 positions spanning 3058 cM . Markers include 3612 microsatellites, 913 SNPs and 60 other markers. Mean separation between marker positions is 1.2 cM. New SNP markers appear in 511 positions, with mean separation of 4.7 cM. Multi-allelic markers, mostly microsatellites, had a mean (maximum) of 216 (366) informative meioses, and a mean 3-lod confidence interval of 3.6 cM Bi-allelic markers, including SNP and other marker types, had a mean (maximum) of 55 (191) informative meioses, and were placed within a mean 8.5 cM 3-lod confidence interval. Homologous human sequences were identified for 1159 markers, including 582 newly developed and mapped SNP.ConclusionAddition of these EST- and BAC-based SNPs to the bovine linkage map not only increases marker density, but provides connections to gene-rich physical maps, including annotated human sequence. The map provides a resource for fine-mapping quantitative trait loci and identification of positional candidate genes, and can be integrated with other data to guide and refine assembly of bovine genome sequence. Even after the bovine genome is completely sequenced, the map will continue to be a useful tool to link observable phenotypes and animal genotypes to underlying genes and molecular mechanisms influencing economically important beef and dairy traits.


PLOS Genetics | 2012

Reduced Lentivirus Susceptibility in Sheep with TMEM154 Mutations

Michael P. Heaton; Michael L. Clawson; Carol G. Chitko-McKown; K. A. Leymaster; T. P. L. Smith; Gregory P. Harhay; Stephen N. White; Lynn M. Herrmann-Hoesing; Michelle R. Mousel; Gregory S. Lewis; Theodore S. Kalbfleisch; James E. Keen; William W. Laegreid

Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H− (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.


Genome Biology | 2010

An atlas of bovine gene expression reveals novel distinctive tissue characteristics and evidence for improving genome annotation

Gregory P. Harhay; T. P. L. Smith; Leeson J. Alexander; Christian D. Haudenschild; J. W. Keele; Lakshmi K. Matukumalli; Steven G. Schroeder; Curtis P. Van Tassell; Cathy Gresham; Susan M. Bridges; Shane C. Burgess; Tad S. Sonstegard

Visna/Maedi, or ovine progressive pneumonia (OPP) as it is known in the United States, is an incurable slow-acting disease of sheep caused by persistent lentivirus infection. This disease affects multiple tissues, including those of the respiratory and central nervous systems. Our aim was to identify ovine genetic risk factors for lentivirus infection. Sixty-nine matched pairs of infected cases and uninfected controls were identified among 736 naturally exposed sheep older than five years of age. These pairs were used in a genome-wide association study with 50,614 markers. A single SNP was identified in the ovine transmembrane protein (TMEM154) that exceeded genome-wide significance (unadjusted p-value 3×10−9). Sanger sequencing of the ovine TMEM154 coding region identified six missense and two frameshift deletion mutations in the predicted signal peptide and extracellular domain. Two TMEM154 haplotypes encoding glutamate (E) at position 35 were associated with infection while a third haplotype with lysine (K) at position 35 was not. Haplotypes encoding full-length E35 isoforms were analyzed together as genetic risk factors in a multi-breed, matched case-control design, with 61 pairs of 4-year-old ewes. The odds of infection for ewes with one copy of a full-length TMEM154 E35 allele were 28 times greater than the odds for those without (p-value<0.0001, 95% CI 5–1,100). In a combined analysis of nine cohorts with 2,705 sheep from Nebraska, Idaho, and Iowa, the relative risk of infection was 2.85 times greater for sheep with a full-length TMEM154 E35 allele (p-value<0.0001, 95% CI 2.36–3.43). Although rare, some sheep were homozygous for TMEM154 deletion mutations and remained uninfected despite a lifetime of significant exposure. Together, these findings indicate that TMEM154 may play a central role in ovine lentivirus infection and removing sheep with the most susceptible genotypes may help eradicate OPP and protect flocks from reinfection.


BMC Veterinary Research | 2008

Prevalence of the prion protein gene E211K variant in U.S. cattle

Michael P. Heaton; J. W. Keele; Gregory P. Harhay; Jürgen A. Richt; Mohammad Koohmaraie; T. L. Wheeler; S. D. Shackelford; E. Casas; D. Andy King; Tad S. Sonstegard; Curtis P. Van Tassell; H. L. Neibergs; C. C. Chase; Theodore S. Kalbfleisch; T. P. L. Smith; Michael L. Clawson; William W. Laegreid

BackgroundA comprehensive transcriptome survey, or gene atlas, provides information essential for a complete understanding of the genomic biology of an organism. We present an atlas of RNA abundance for 92 adult, juvenile and fetal cattle tissues and three cattle cell lines.ResultsThe Bovine Gene Atlas was generated from 7.2 million unique digital gene expression tag sequences (300.2 million total raw tag sequences), from which 1.59 million unique tag sequences were identified that mapped to the draft bovine genome accounting for 85% of the total raw tag abundance. Filtering these tags yielded 87,764 unique tag sequences that unambiguously mapped to 16,517 annotated protein-coding loci in the draft genome accounting for 45% of the total raw tag abundance. Clustering of tissues based on tag abundance profiles generally confirmed ontology classification based on anatomy. There were 5,429 constitutively expressed loci and 3,445 constitutively expressed unique tag sequences mapping outside annotated gene boundaries that represent a resource for enhancing current gene models. Physical measures such as inferred transcript length or antisense tag abundance identified tissues with atypical transcriptional tag profiles. We report for the first time the tissue-specific variation in the proportion of mitochondrial transcriptional tag abundance.ConclusionsThe Bovine Gene Atlas is the deepest and broadest transcriptome survey of any livestock genome to date. Commonalities and variation in sense and antisense transcript tag profiles identified in different tissues facilitate the examination of the relationship between gene expression, tissue, and gene function.


Letters in Applied Microbiology | 2012

Comparison of bacterial communities in faeces of beef cattle fed diets containing corn and wet distillers' grain with solubles

L.M. Durso; J. E. Wells; Gregory P. Harhay; W.C. Rice; L. A. Kuehn; James L. Bono; S. D. Shackelford; T. L. Wheeler; T. P. L. Smith

BackgroundIn 2006, an atypical U.S. case of bovine spongiform encephalopathy (BSE) was discovered in Alabama and later reported to be polymorphic for glutamate (E) and lysine (K) codons at position 211 in the bovine prion protein gene (Prnp) coding sequence. A bovine E211K mutation is important because it is analogous to the most common pathogenic mutation in humans (E200K) which causes hereditary Creutzfeldt – Jakob disease, an autosomal dominant form of prion disease. The present report describes a high-throughput matrix-associated laser desorption/ionization-time-of-flight mass spectrometry assay for scoring the Prnp E211K variant and its use to determine an upper limit for the K211 allele frequency in U.S. cattle.ResultsThe K211 allele was not detected in 6062 cattle, including those from five commercial beef processing plants (3892 carcasses) and 2170 registered cattle from 42 breeds. Multiple nearby polymorphisms in Prnp coding sequence of 1456 diverse purebred cattle (42 breeds) did not interfere with scoring E211 or K211 alleles. Based on these results, the upper bounds for prevalence of the E211K variant was estimated to be extremely low, less than 1 in 2000 cattle (Bayesian analysis based on 95% quantile of the posterior distribution with a uniform prior).ConclusionNo groups or breeds of U.S. cattle are presently known to harbor the Prnp K211 allele. Because a carrier was not detected, the number of additional atypical BSE cases with K211 will also be vanishingly low.


PLOS ONE | 2013

Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus.

Zhihua Jiang; Xiang Zhou; Jennifer J. Michal; Xiao-Lin Wu; Lifan Zhang; Ming Zhang; Bo Ding; Bang Liu; Valipuram S. Manoranjan; John D. Neill; Gregory P. Harhay; Marcus E. Kehrli; Laura C. Miller

Aim:  The mammalian intestinal microflora has been shown to impact host physiology. In cattle, intestinal bacteria are also associated with faecal contamination of environmental sources and human illness via foodborne pathogens. Use of wet distillers’ grains with solubles (WDGS) in cattle feed creates a gastrointestinal environment where some bacterial species are enriched. Here, we examine if a diet containing 40% WDGS results in fundamentally different microbial community structures.

Collaboration


Dive into the Gregory P. Harhay's collaboration.

Top Co-Authors

Avatar

T. P. L. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

James L. Bono

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Michael L. Clawson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Michael P. Heaton

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Dayna M. Harhay

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Keele

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Blake A. Dinsmore

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Monica Santovenia

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Patricia I. Fields

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge