Dazhi Zhao
Yeshiva University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dazhi Zhao.
Journal of Biological Chemistry | 2005
Terry P. Combs; Nagajyothi; Shankar Mukherjee; Cecilia J. de Almeida; Linda A. Jelicks; William Schubert; Ying Lin; David S. Jayabalan; Dazhi Zhao; Vicki L. Braunstein; Shira Landskroner-Eiger; Aisha Cordero; Stephen M. Factor; Louis M. Weiss; Michael P. Lisanti; Herbert B. Tanowitz; Philipp E. Scherer
Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.
Parasitology Research | 2012
Fnu Nagajyothi; Dazhi Zhao; Louis M. Weiss; Herbert B. Tanowitz
Trypanosoma cruzi, the etiologic agent of Chagas disease, causes an acute myocarditis and chronic cardiomyopathy. The current therapeutic agents for this disease are not always effective and often have severe side effects. Curcumin, a plant polyphenol, has demonstrated a wide range of potential therapeutic effects. In this study, we examined the effect of curcumin on T. cruzi infection in vitro and in vivo. Curcumin pretreatment of fibroblasts inhibited parasite invasion. Treatment reduced the expression of the low density lipoprotein receptor, which is involved in T. cruzi host cell invasion. Curcumin treatment of T. cruzi-infected CD1 mice reduced parasitemia and decreased the parasitism of infected heart tissue. This was associated with a significant reduction in macrophage infiltration and inflammation in both the heart and liver; moreover, curcumin-treated infected mice displayed a 100% survival rate in contrast to the 60% survival rate commonly observed in untreated infected mice. These data are consistent with curcumin modulating infection-induced changes in signaling pathways involved in inflammation, oxidative stress, and apoptosis. These data suggest that curcumin and its derivatives could be a suitable drug for the amelioration of chagasic heart disease.
PLOS ONE | 2011
Shankar Mukherjee; Fabiana S. Machado; Huang Huang; Helieh S. Oz; Linda A. Jelicks; Cibele M. Prado; Wade Koba; Eugene J. Fine; Dazhi Zhao; Stephen M. Factor; J. Elias Collado; Louis M. Weiss; Herbert B. Tanowitz; Anthony W. Ashton
Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A2 and prostaglandin (PG)F2α. Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the “cytokine storm” during acute infection. We conclude that ASA, through both COX inhibition and other “off-target” effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.
The Journal of Infectious Diseases | 2008
Regina Coeli dos Santos Goldenberg; Linda A. Jelicks; Fabio S. A. Fortes; Louis M. Weiss; Leonardo L. Rocha; Dazhi Zhao; Antonio Carlos Campos de Carvalho; David C. Spray; Herbert B. Tanowitz
Chronic chagasic cardiomyopathy, which is caused by the protozoan Trypanosoma cruzi, is a major cause of heart failure in Latin America. It is a disease for which effective treatment in its advanced clinical forms is lacking. We have previously shown that bone marrow mononuclear cell (BMC) transplantation is effective in reducing inflammation and fibrosis in the mouse model of Chagas disease. The present study used magnetic resonance imaging to assess changes in the cardiac morphology of infected mice after therapy with BMCs. Serial imaging of the BMC-treated mice revealed regression of the right ventricular dilatation typically observed in the chagasic mouse model.
The Journal of Infectious Diseases | 2012
Fnu Nagajyothi; Mahalia S. Desruisseaux; Fabiana S. Machado; Rajendra Upadhya; Dazhi Zhao; Gary J. Schwartz; Mauro M. Teixeira; Chris Albanese; Michael P. Lisanti; Streamson C. Chua; Louis M. Weiss; Philipp E. Scherer; Herbert B. Tanowitz
Brown adipose tissue (BAT) and white adipose tissue (WAT) and adipocytes are targets of Trypanosoma cruzi infection. Adipose tissue obtained from CD-1 mice 15 days after infection, an early stage of infection revealed a high parasite load. There was a significant increase in macrophages in infected adipose tissue and a reduction in lipid accumulation, adipocyte size, and fat mass and increased expression of lipolytic enzymes. Infection increased levels of Toll-like receptor (TLR) 4 and TLR9 and in the expression of components of the mitogen-activated protein kinase pathway. Protein and messenger RNA (mRNA) levels of peroxisome proliferator-activated receptor γ were increased in WAT, whereas protein and mRNA levels of adiponectin were significantly reduced in BAT and WAT. The mRNA levels of cytokines, chemokines, and their receptors were increased. Nuclear Factor Kappa B levels were increased in BAT, whereas Iκκ-γ levels increased in WAT. Adipose tissue is an early target of T. cruzi infection.
American Journal of Pathology | 2013
Fnu Nagajyothi; Regina Kuliawat; Christine M. Kusminski; Fabiana S. Machado; Mahalia S. Desruisseaux; Dazhi Zhao; Gary J. Schwartz; Huan Huang; Chris Albanese; Michael P. Lisanti; Rajat Singh; Feng Li; Louis M. Weiss; Stephen M. Factor; Jeffrey E. Pessin; Philipp E. Scherer; Herbert B. Tanowitz
Chagas disease, caused by Trypanosoma cruzi, is an important cause of morbidity and mortality primarily resulting from cardiac dysfunction, although T. cruzi infection results in inflammation and cell destruction in many organs. We found that T. cruzi (Brazil strain) infection of mice results in pancreatic inflammation and parasitism within pancreatic β-cells with apparent sparing of α cells and leads to the disruption of pancreatic islet architecture, β-cell dysfunction, and surprisingly, hypoglycemia. Blood glucose and insulin levels were reduced in infected mice during acute infection and insulin levels remained low into the chronic phase. In response to the hypoglycemia, glucagon levels 30 days postinfection were elevated, indicating normal α-cell function. Administration of L-arginine and a β-adrenergic receptor agonist (CL316, 243, respectively) resulted in a diminished insulin response during the acute and chronic phases. Insulin granules were docked, but the lack of insulin secretion suggested an inability of granules to fuse at the plasma membrane of pancreatic β-cells. In the liver, there was a concomitant reduced expression of glucose-6-phosphatase mRNA and glucose production from pyruvate (pyruvate tolerance test), demonstrating defective hepatic gluconeogenesis as a cause for the T. cruzi-induced hypoglycemia, despite reduced insulin, but elevated glucagon levels. The data establishes a complex, multi-tissue relationship between T. cruzi infection, Chagas disease, and host glucose homeostasis.
The Journal of Infectious Diseases | 2010
Fnu Nagajyothi; Dazhi Zhao; Fabiana S. Machado; Louis M. Weiss; Gary J. Schwartz; Mahalia S. Desruisseaux; Yang Zhao; Stephen M. Factor; Huan Huang; Chris Albanese; Mauro M. Teixeira; Philipp E. Scherer; Streamson C. Chua; Herbert B. Tanowitz
Mice carrying a defective leptin receptor gene (db/db mice) are metabolically challenged and upon infection with Trypanosoma cruzi (Brazil strain) suffer high mortality. In genetically modified db/db mice, (NSE-Rb db/db mice), central leptin signaling is reconstituted only in the brain, which is sufficient to correct the metabolic defects. NSE-Rb db/db mice were infected with T. cruzi to determine the impact of the lack of leptin signaling on infection in the absence of metabolic dysregulation. Parasitemia levels, mortality rates, and tissue parasitism were statistically significantly increased in infected db/db mice compared with those in infected NSE-Rb db/db and FVB wild-type mice. There was a reduction in fat mass and blood glucose level in infected db/db mice. Plasma levels of several cytokines and chemokines were statistically significantly increased in infected db/db mice compared with those in infected FVB and NSE-Rb db/db mice. These findings suggest that leptin resistance in individuals with obesity and diabetes mellitus may have adverse consequences in T. cruzi infection.
American Journal of Tropical Medicine and Hygiene | 2009
Cibele M. Prado; Eugene J. Fine; Wade Koba; Dazhi Zhao; Marcos A. Rossi; Herbert B. Tanowitz; Linda A. Jelicks
Noninvasive assessment of cardiac structure and function is essential to understand the natural course of murine infection with Trypanosoma cruzi. Magnetic resonance imaging (MRI) and echocardiography have been used to monitor anatomy and function; positron emission tomography (PET) is ideal for monitoring metabolic events in the myocardium. Mice infected with T. cruzi (Brazil strain) were imaged 15-100 days post infection (dpi). Quantitative (18)F-FDG microPET imaging, MRI and echocardiography were performed and compared. Tracer ((18)F-FDG) uptake was significantly higher in infected mice at all days of infection, from 15 to 100 dpi. Dilatation of the right ventricular chamber was observed by MRI from 30 to 100 dpi in infected mice. Echocardiography revealed significantly reduced ejection fraction by 60 dpi. Combination of these three complementary imaging modalities makes it possible to noninvasively quantify cardiovascular function, morphology, and metabolism from the earliest days of infection through the chronic phase.
PLOS Neglected Tropical Diseases | 2014
Fnu Nagajyothi; Louis M. Weiss; Dazhi Zhao; Wade Koba; Linda A. Jelicks; Min Hui Cui; Stephen M. Factor; Philipp E. Scherer; Herbert B. Tanowitz
Background Trypanosoma cruzi, the causative agent of Chagas disease, has high affinity for lipoproteins and adipose tissue. Infection results in myocarditis, fat loss and alterations in lipid homeostasis. This study was aimed at analyzing the effect of high fat diet (HFD) on regulating acute T. cruzi infection-induced myocarditis and to evaluate the effect of HFD on lipid metabolism in adipose tissue and heart during acute T. cruzi infection. Methodology/Principal Findings CD1 mice were infected with T. cruzi (Brazil strain) and fed either a regular control diet (RD) or HFD for 35 days following infection. Serum lipid profile, tissue cholesterol levels, blood parasitemia, and tissue parasite load were analyzed to evaluate the effect of diet on infection. MicroPET and MRI analysis were performed to examine the morphological and functional status of the heart during acute infection. qPCR and immunoblot analysis were carried out to analyze the effect of diet on the genes involved in the host lipid metabolism during infection. Oil red O staining of the adipose tissue demonstrated reduced lipolysis in HFD compared to RD fed mice. HFD reduced mortality, parasitemia and cardiac parasite load, but increased parasite load in adipocytes. HFD decreased lipolysis during acute infection. Both qPCR and protein analysis demonstrated alterations in lipid metabolic pathways in adipose tissue and heart in RD fed mice, which were further modulated by HFD. Both microPET and MRI analyses demonstrated changes in infected RD murine hearts which were ameliorated by HFD. Conclusion/Significance These studies indicate that Chagasic cardiomyopathy is associated with a cardiac lipidpathy and that both cardiac lipotoxicity and adipose tissue play a role in the pathogenesis of Chagas disease. HFD protected mice from T. cruzi infection-induced myocardial damage most likely due to the effects of HFD on both adipogenesis and T. cruzi infection-induced cardiac lipidopathy.
Diabetes-metabolism Research and Reviews | 2015
Wunnie Brima; Daniel J. Eden; Syed Faizan Mehdi; Michelle Bravo; Mohammad M. Wiese; Joanna Stein; Vanessa Almonte; Dazhi Zhao; Irwin J. Kurland; Jeffrey E. Pessin; Tomáš Zima; Herbert B. Tanowitz; Louis M. Weiss; Jesse Roth; Fnu Nagajyothi
Infection with Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, results in chronic infection that leads to cardiomyopathy with increased mortality and morbidity in endemic regions. In a companion study, our group found that a high‐fat diet (HFD) protected mice from T. cruzi‐induced myocardial damage and significantly reduced post‐infection mortality during acute T. cruzi infection.