De-Li Zhai
World Agroforestry Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by De-Li Zhai.
Remote Sensing | 2015
Weili Kou; Xiangming Xiao; Jinwei Dong; Shu Gan; De-Li Zhai; Geli Zhang; Yuanwei Qin; Li Li
Accurate and updated finer resolution maps of rubber plantations and stand ages are needed to understand and assess the impacts of rubber plantations on regional ecosystem processes. This study presented a simple method for mapping rubber plantation areas and their stand ages by integration of PALSAR 50-m mosaic images and multi-temporal Landsat TM/ETM+ images. The L-band PALSAR 50-m mosaic images were used to map forests (including both natural forests and rubber trees) and non-forests. For those PALSAR-based forest pixels, we analyzed the multi-temporal Landsat TM/ETM+ images from 2000 to 2009. We first studied phenological signatures of deciduous rubber plantations (defoliation and foliation) and natural forests through analysis of surface reflectance, Normal Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) and generated a map of rubber plantations in 2009. We then analyzed phenological signatures of rubber plantations with different stand ages and generated a map, in 2009, of rubber plantation stand ages ( 10 years-old) based on multi-temporal Landsat images. The resultant maps clearly illustrated how rubber plantations have expanded into the mountains in the study area over the years. The results in this study demonstrate the potential of integrating microwave (e.g., PALSAR) and optical remote sensing in the characterization of rubber plantations and their expansion over time.
Annals of Botany | 2014
Shan-Shan Qi; Zhi-Cong Dai; Shi-Li Miao; De-Li Zhai; Chuncan Si; Ping Huang; Rui-Ping Wang; Daolin Du
BACKGROUND AND AIMS Invasive clonal plants have two reproduction patterns, namely sexual and vegetative propagation. However, seedling recruitment of invasive clonal plants can decline as the invasion process proceeds. For example, although the invasive clonal Wedelia trilobata (Asteraceae) produces numerous seeds, few seedlings emerge under its dense population canopy in the field. In this study it is hypothesized that light limitation and the presence of a thick layer of its own litter may be the primary factors causing the failure of seedling recruitment for this invasive weed in the field. METHODS A field survey was conducted to determine the allocation of resources to sexual reproduction and seedling recruitment in W. trilobata. Seed germination was also determined in the field. Effects of light and W. trilobata leaf extracts on seed germination and seedling growth were tested in the laboratory. KEY RESULTS Wedelia trilobata blooms profusely and produces copious viable seeds in the field. However, seedlings of W. trilobata were not detected under mother ramets and few emerged seedlings were found in the bare ground near to populations. In laboratory experiments, low light significantly inhibited seed germination. Leaf extracts also decreased seed germination and inhibited seedling growth, and significant interactions were found between low light and leaf extracts on seed germination. However, seeds were found to germinate in an invaded field after removal of the W. trilobata plant canopy. CONCLUSIONS The results indicate that lack of light and the presence of its own litter might be two major factors responsible for the low numbers of W. trilobata seedlings found in the field. New populations will establish from seeds once the limiting factors are eliminated, and seeds can be the agents of long-distance dispersal; therefore, prevention of seed production remains an important component in controlling the spread of this invasive clonal plant.
PLOS ONE | 2014
Shan-Shan Qi; Zhi-Cong Dai; De-Li Zhai; Si-Chong Chen; Chuncan Si; Ping Huang; Rui-Ping Wang; Qiong-Xin Zhong; Daolin Du
The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.
Journal of Chemical Ecology | 2016
Zhi-Cong Dai; Wei Fu; Shan-Shan Qi; De-Li Zhai; Si-Chong Chen; Ling-Yun Wan; Ping Huang; Daolin Du
The invasive clonal plant Wedelia trilobata contains higher levels of ent-kaurane diterpenes, which are precursors of gibberellins (GAs), and higher rates of clonal growth than its native congener W. chinensis in invaded habitats. We hypothesized that the higher levels of endogenous GAs facilitate greater ramet growth in W. trilobata compared with W. chinensis. We quantified endogenous levels of GA1+3 in the two species and compared their growth responses to the changes of endogenous and exogenous GA3 by using short-term and long-term hydroponics experiments. After a period of homogeneous cultivation, levels of endogenous GA1+3 were higher in W. trilobata than in W. chinensis. The reduction of endogenous GAs repressed the emergence of adventitious roots and the growth of W. trilobata in the initial cultivation stage, and inhibited its shoot elongation and biomass. Levels of endogenous GA1+3 were positively correlated with the length of shoots and adventitious roots of W. trilobata. Adventitious roots of W. trilobata also emerged earlier and grew faster when treated with exogenous GA3. In contrast, exogenous GA3 treatment inhibited the length of adventitious roots in W. chinensis, and levels of endogenous GA1+3 did not correlate with shoot or adventitious root length. Our study suggests that GAs accelerate the rapid clonal growth of W. trilobata, more than that of its native congener W. chinensis, illustrating the relationship between plant hormones and the clonal growth of invasive plants. These findings are important for understanding the mechanisms associated with the invasiveness of clonal plants and their potential management.
Remote Sensing | 2017
De-Li Zhai; Jinwei Dong; Georg Cadisch; Mingcheng Wang; Weili Kou; Jianchu Xu; Xiangming Xiao; Sawaid Abbas
The increasing expansion of rubber plantations throughout East and Southeast Asia urgently requires improved methods for effective mapping and monitoring. The phenological information from rubber plantations was found effective in rubber mapping. Previous studies have mostly applied rule-pixel-based phenology approaches for rubber plantations mapping, which might result in broken patches in fragmented landscapes. This study introduces a new paradigm by combining phenology information with object-based classification to map fragmented patches of rubber plantations in Xishuangbanna. This research first delineated the time windows of the defoliation and foliation phases of rubber plantations by acquiring the temporal profile and phenological features of rubber plantations and natural forests through the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. To investigate the ability of finer resolution images at capturing the temporal profile or phenological information, 30 m resolution Landsat image data were used to capture the temporal profile, and a phenology algorithm to separate rubber plantations and natural forests was then defined. The derived phenology algorithm was used by both the object-based and pixel-based classification to investigate whether the object-based approach could improve the mapping accuracy. Whether adding the phenology information to the object-based classification could improve rubber plantation mapping accuracy in mountainous Xishuangbanna was also investigated. This resulted in three approaches: rule-pixel-based phenology, rule-object-based phenology, and nearest-neighbor-object-based phenology. The results showed that the rule-object-based phenology approaches (with overall accuracy 77.5% and Kappa Coefficients of 0.66) and nearest-neighbor-object-based phenology approach (91.0% and 0.86) achieved a higher accuracy than that of the rule-pixel-based phenology approach (72.7% and 0.59). The results proved that (1) object-based approaches could improve the accuracy of rubber plantation mapping compared to the pixel-based approach and (2) incorporating the phenological information from vegetation improved the overall accuracy of the thematic map.
Plant Diversity | 2017
De-Li Zhai; Jianchu Xu; Zhi-Cong Dai; Dietrich Schmidt-Vogt
The term forest transition refers to a change in forest cover over a given area from a period of net forest area loss to a period of net gain. Whether transitioning from deforestation to reforestation can lead to improved ecosystem services, depends on the quality and characteristics of the newly established forest cover. Using publicly available data, we examine forest transition in two regions of tropical China: Hainan Island and Xishuangbanna. We found that the overall increase of forest cover in both areas during the 1980s was due to an increase in plantation forests rather than to increases in the area covered by natural forest. We also found a time lag between the increase in overall forest cover and an increase in natural forest. On Hainan Island, natural forest continued to decline beyond the point in time when overall forest cover had started to increase, and only began to recover ten years after the turning point in 1978. In Xishuangbanna, where the transition point occurred ten years later, the decline of natural forest cover is still going on. These divergent trends underlying forest transition are concealed by the continued practice to apply the term “forest” broadly, without distinguishing between natural forests and planted forests. Due to the use of undiscriminating terminology, the loss of natural forest may go unnoticed, increasing the risk of plantation forests displacing natural forests in the course of forest transition. Our findings are important for programs related to forest management and ecosystem services improvement, including reforestation and Payments for Ecosystem Services programs.
Plant Diversity | 2017
Kai Yan; Sailesh Ranjitkar; De-Li Zhai; Yunju Li; Jianchu Xu; Bo Li; Yang Lu
China has the largest area of inland geological phosphorus-rich (GPR) mountains in the world, where vegetation restoration is key to safeguarding the environment. We reviewed the published literature and collected new data in order to analyze re-vegetation patterns and the status of plant communities in central Yunnan. The aim of our analysis was to suggest future improvements to restoration strategies in GPR mountain regions. Our results showed that spontaneous recovery was the most widespread type of restoration. N-fixing species such as Coriaria nepalensis and Alnus nepalensis play a vital role in succession. In the past, monoculture tree plantation was the primary method used in afforestation activities in central Yunnan; in recent years however, several different methods of restoration have been introduced including the use of agroforestry systems. For practical restoration, we found that spontaneous recovery was capable of delivering the best results, but that during its early stages, restoration results were affected by several factors including erosion risk, the origin of propagates and environmental variation. In contrast, methods employing human-made communities performed better in their early stages, but were constrained by higher costs and vulnerability to degradation and erosion. The use of N-fixing species such as A. nepalensis and Acacia mearnsii in plantations were unsuccessful in restoring full ecosystem functions. The success of restoration activities in GPR mountain regions could be improved through the following measures: (1) developing a better understanding of the respective advantages and disadvantages of current natural and human-engineered restoration approaches; (2) elucidating the feedback mechanism between phosphorus-rich soil and species selected for restoration, especially N-fixing species; (3) introducing market incentives aimed at encouraging specific restoration activities such as agroforestry, and improving the industry value chain.
International Journal of Environmental Research | 2017
Wei Fu; Kai Huang; Hong-Hong Cai; Jian Li; De-Li Zhai; Zhi-Cong Dai; Daolin Du
AbstractHeavy metal pollution of the soil has become a global threat to the terrestrial environment, food security, and human health due to their non-biodegradable and high persistent characteristics in the soil. However, the effective measurements for the restoration of these polluted soils are rare; therefore, this study was conducted to investigate the role of four naturalized plants (Celosia argentea, Praxelis clematidea, Eupatorium adenophora, and Solidago canadensis) as potential resources for the remediation of cadmium contamination through a tolerance and accumulation experiment. The plants’ morphological phenotype (growth and biomass), physiological phenotype (relative chlorophyll content, leaf nitrogen content, root cell activity, and reactive oxygen species), and cadmium accumulation were evaluated using the hydroponic method. The results showed that cadmium induced an excess of reactive oxygen species in the roots, and the growth of C. argentea is depressed greatly. Praxelis clematidea, E. adenophora, and S. canadensis were identified to have a higher tolerance to cadmium accumulation and could be used as potential species for phytoremediation after further investigation of the actual remediation results in the field.
International Journal of Biometeorology | 2017
De-Li Zhai; Haiying Yu; Si-Chong Chen; Sailesh Ranjitkar; Jianchu Xu
The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.
Journal of Forestry Research | 2018
Zhi-Cong Dai; Chuncan Si; De-Li Zhai; Ping Huang; Shan-Shan Qi; Ying Lin; Rui-Ping Wang; Qiong-Xin Zhong; Daolin Du
The endangered Vatica mangachapoi, a long-lived, tropical tree with economic and ecological importance found in Hainan, China, was used to assess the hypothesis that historical human activities in Hainan’s tropical rain forest could have negative effects on the genetic diversity of V. mangachapoi. Three hundred and twenty individuals from 11 natural populations—which were classified into three groups according to levels of disturbance—were sampled and analyzed with ISSR markers. Although genetic diversity of V. mangachapoi is high at the species level, it is relatively low within populations. A significant genetic differentiation occurs among different disturbance levels. Significant isolation-by-distance indicated relevant historical anthropogenic changes. Our findings showed that historical human disturbances significantly increase the genetic differentiation and slightly decrease the genetic diversity of long-lived tree V. mangachapoi. Relevant targeting conservation actions were recommended.