Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where De-Pei Liu is active.

Publication


Featured researches published by De-Pei Liu.


Nature Medicine | 2005

A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury.

Keiji Kuba; Yumiko Imai; Shuan Rao; Hong Gao; Feng Guo; Bin Guan; Yi Huan; Peng Yang; Yanli Zhang; Wei Deng; Linlin Bao; Binlin Zhang; Guang Liu; Zhong Wang; Mark C. Chappell; Yanxin Liu; Dexian Zheng; Teiji Wada; Arthur S. Slutsky; De-Pei Liu; Chuan Qin; Chengyu Jiang; Josef M. Penninger

During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.


Cardiovascular Research | 2008

Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice

Qing-Jun Zhang; Zhao Wang; Hou-Zao Chen; Shuang Zhou; Wei Zheng; Guang Liu; Yu-Sheng Wei; Hua Cai; De-Pei Liu; Chih-Chuan Liang

AIMS Hazardous environmental and genetic factors can damage endothelial cells to induce atherosclerotic vascular disease. Recent studies suggest that class III deacetylase SIRT1 may promote cell survival via novel antioxidative mechanisms. The current study tested the hypothesis that SIRT1, specifically overexpressed in the endothelium, is atheroprotective. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVECs) were used to study the effects of oxidized low-density lipoprotein (LDL) on SIRT1 expression. Endothelial cell-specific SIRT1 transgenic (SIRT1-Tg) mice were used to study the effects of SIRT1 on aortic vascular tone. SIRT1-Tg mice were crossed with apolipoprotein E null (apoE(-/-)) mice to obtain SIRT1-Tg/apoE(-/-) mice for the analysis of atherogenesis in the presence of endothelial overexpression of SIRT1. SIRT1 expression in HUVECs was increased by the treatment with oxidative LDL. Adenoviral-mediated overexpression of SIRT1 was protective of apoptosis of HUVECs. Calorie restriction increased, whereas high-fat diet decreased, the SIRT1 expression in mouse aortas. In SIRT1-Tg mice, high fat-induced impairment in endothelium-dependent vasorelaxation was improved compared with that of wild-type littermates. This was accompanied by an upregualtion of aortic endothelial nitric oxide synthase expression in the SIRT1-Tg mice. The SIRT1-Tg/apoE(-/-) mice had less atherosclerotic lesions compared with apoE(-/-) controls, without affecting blood lipids and glucose levels. CONCLUSION These results suggest that endothelium-specific SIRT1 overexpression likely suppresses atherogenesis via improving endothelial cell survival and function.


Journal of Molecular Medicine | 2003

Paraoxonase gene polymorphisms, oxidative stress, and diseases

Hong-Liang Li; De-Pei Liu; Chih-Chuan Liang

The paraoxonase (PON) gene cluster contains at least three members, including PON1, PON2, and PON3, located on chromosome 7q21.3–22.1. Until now there has been little insight into the role of the respective gene products in human physiology and pathology. However, emerging evidence from biochemical and genetic experiments is providing clues about the role(s) of the products of these genes, which indicates that PON(s) acts as important guardians against cellular damage from toxic agents, such as organophosphates, oxidized lipids in the plasma low-density lipoproteins. In parallel, substantial data have been published on the association between the polymorphisms of PON(s) and coronary heart disease. It has become clear that the polymorphisms significantly affect the prevalence of coronary heart disease. However, the associations between the PON(s) polymorphisms and most of these conditions were found to be inconsistent when additional populations were investigated. This contribution provides an overview of the status of research of each of the three genes and the available association studies and the potential problems in interpreting the data. We also review the current evidence on the association between PON(s) polymorphisms and diseases other than coronary heart disease and some metabolic quantitative phenotypes, such as plasma lipoproteins, plasma glucose, and birthweight. Finally, we suggest directions for the future that might elucidate the role of the PON genetic polymorphisms in this potentially important function of PON(s) and the role in coronary heart disease and other related diseases.


Circulation Research | 2011

Repression of P66Shc Expression by SIRT1 Contributes to the Prevention of Hyperglycemia-Induced Endothelial Dysfunction

Shuang Zhou; Hou-Zao Chen; Yan-Zhen Wan; Qing-Jun Zhang; Yu-Sheng Wei; Shuai Huang; Jin-Jing Liu; Yun-Biao Lu; Zhu-Qin Zhang; Ruifeng Yang; Ran Zhang; Hua Cai; De-Pei Liu; Chih-Chuan Liang

Rationale: Inactivation of the p66Shc adaptor protein confers resistance to oxidative stress and protects mice from aging-associated vascular diseases. However, there is limited information about the negative regulating mechanisms of p66Shc expression in the vascular system. Objective: In this study, we investigated the role of SIRT1, a class III histone deacetylase, in the regulation of p66Shc expression and hyperglycemia-induced endothelial dysfunction. Methods and Results: Expressions of p66Shc gene transcript and protein were significantly increased by different kinds of class III histone deacetylase (sirtuin) inhibitors in human umbilical vein endothelial cells and 293A cells. Adenoviral overexpression of SIRT1 inhibited high-glucose–induced p66Shc upregulation in human umbilical vein endothelial cells. Knockdown of SIRT1 increased p66Shc expression and also increased the expression levels of plasminogen activator inhibitor-1 expression, but decreased manganese superoxide dismutase expression in high-glucose conditions. However, knockdown of p66Shc significantly reversed the effects of SIRT1 knockdown. In addition, p66Shc overexpression significantly decreased manganese superoxide dismutase expression and increased plasminogen activator inhibitor-1 expression in high-glucose conditions, which were recovered by SIRT1 overexpression. Moreover, compared to streptozotocin-induced wild-type diabetic mice, endothelium-specific SIRT1 transgenic diabetic mice had decreased p66Shc expression at both the mRNA and the protein levels, improved endothelial function, and reduced accumulation of nitrotyrosine and 8-OHdG (markers of oxidative stress). We further found that SIRT1 was able to bind to the p66Shc promoter (−508 bp to −250 bp), resulting in a decrease in the acetylation of histone H3 bound to the p66Shc promoter region. Conclusion: Our findings indicate that repression of p66Shc expression by SIRT1 contributes to the protection of hyperglycemia-induced endothelial dysfunction.


Journal of Biological Chemistry | 2010

SIRT1 Suppresses Activator Protein-1 Transcriptional Activity and Cyclooxygenase-2 Expression in Macrophages

Ran Zhang; Hou-Zao Chen; Jin-Jing Liu; Yu-Yan Jia; Zhu-Qin Zhang; Ruifeng Yang; Yuan Zhang; Jing Xu; Yu-Sheng Wei; De-Pei Liu; Chih-Chuan Liang

SIRT1 (Sirtuin type 1), a mammalian orthologue of yeast SIR2 (silent information regulator 2), has been shown to mediate a variety of calorie restriction (CR)-induced physiological events, such as cell fate regulation via deacetylation of the substrate proteins. However, whether SIRT1 deacetylates activator protein-1 (AP-1) to influence its transcriptional activity and target gene expression is still unknown. Here we demonstrate that SIRT1 directly interacts with the basic leucine zipper domains of c-Fos and c-Jun, the major components of AP-1, by which SIRT1 suppressed the transcriptional activity of AP-1. This process requires the deacetylase activity of SIRT1. Notably, SIRT1 reduced the expression of COX-2, a typical AP-1 target gene, and decreased prostaglandin E2 (PGE2) production of peritoneal macrophages (pMΦs). pMΦs with SIRT1 overexpression displayed improved phagocytosis and tumoricidal functions, which are associated with depressed PGE2. Furthermore, SIRT1 protein level was up-regulated in CR mouse pMΦs, whereas elevated SIRT1 decreased COX-2 expression and improved PGE2-related macrophage functions that were reversed following inhibition of SIRT1 deacetylase activity. Thus, our results indicate that SIRT1 may be a mediator of CR-induced macrophage regulation, and its deacetylase activity contributes to the inhibition of AP-1 transcriptional activity and COX-2 expression leading to amelioration of macrophage function.


Frontiers in Physiology | 2014

Mitochondria, endothelial cell function, and vascular diseases.

Xiaoqiang Tang; Yu-Xuan Luo; Hou-Zao Chen; De-Pei Liu

Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction.


Journal of Clinical Investigation | 2011

The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice

Qing Jun Zhang; Hou-Zao Chen; Lin Wang; De-Pei Liu; Joseph A. Hill; Zhi Ping Liu

Cardiac hypertrophy and failure are accompanied by a reprogramming of gene expression that involves transcription factors and chromatin remodeling enzymes. Little is known about the roles of histone methylation and demethylation in this process. To understand the role of JMJD2A, a histone trimethyl demethylase, in cardiac hypertrophy, we generated mouse lines with heart-specific Jmjd2a deletion (hKO) and overexpression (Jmjd2a-Tg). Jmjd2a hKO and Jmjd2a-Tg mice had no overt baseline phenotype, but did demonstrate altered responses to cardiac stresses. While inactivation of Jmjd2a resulted in an attenuated hypertrophic response to transverse aortic constriction-induced (TAC-induced) pressure overload, Jmjd2a-Tg mice displayed exacerbated cardiac hypertrophy. We identified four-and-a-half LIM domains 1 (FHL1), a key component of the mechanotransducer machinery in the heart, as a direct target of JMJD2A. JMJD2A bound to the FHL1 promoter in response to TAC, upregulated FHL1 expression, and downregulated H3K9 trimethylation. Upregulation of FHL1 by JMJD2A was mediated through SRF and myocardin and required its demethylase activity. The expression of JMJD2A was upregulated in human hypertrophic cardiomyopathy patients. Our studies reveal that JMJD2A promotes cardiac hypertrophy under pathological conditions and suggest what we believe to be a novel mechanism for JMJD2A in reprogramming of gene expression involved in cardiac hypertrophy.


Molecular and Cellular Biology | 2006

Active Chromatin Hub of the Mouse α-Globin Locus Forms in a Transcription Factory of Clustered Housekeeping Genes

Guo-Ling Zhou; Li Xin; Wei Song; Li-Jun Di; Guang Liu; Xue-Song Wu; De-Pei Liu; Chih-Chuan Liang

ABSTRACT RNA polymerases can be shared by a particular group of genes in a transcription “factory” in nuclei, where transcription may be coordinated in concert with the distribution of coexpressed genes in higher-eukaryote genomes. Moreover, gene expression can be modulated by regulatory elements working over a long distance. Here, we compared the conformation of a 130-kb chromatin region containing the mouse α-globin cluster and their flanking housekeeping genes in 14.5-day-postcoitum fetal liver and brain cells. The analysis of chromatin conformation showed that the active α1 and α2 globin genes and upstream regulatory elements are in close spatial proximity, indicating that looping may function in the transcriptional regulation of the mouse α-globin cluster. In fetal liver cells, the active α1 and α2 genes, but not the inactive ζ gene, colocalize with neighboring housekeeping genes C16orf33, C16orf8, MPG, and C16orf35. This is in sharp contrast with the mouse α-globin genes in nonexpressing cells, which are separated from the congregated housekeeping genes. A comparison of RNA polymerase II (Pol II) occupancies showed that active α1 and α2 gene promoters have a much higher RNA Pol II enrichment in liver than in brain. The RNA Pol II occupancy at the ζ gene promoter, which is specifically repressed during development, is much lower than that at the α1 and α2 promoters. Thus, the mouse α-globin gene cluster may be regulated through moving in or out active globin gene promoters and regulatory elements of a preexisting transcription factory in the nucleus, which is maintained by the flanking clustered housekeeping genes, to activate or inactivate α-globin gene expression.


Circulation Research | 2011

SIRT1 Acts as a Modulator of Neointima Formation Following Vascular Injury in Mice

Li Li; Huina Zhang; Hou-Zao Chen; Peng Gao; Li-Hua Zhu; Hongliang Li; Xiang Lv; Qing-Jun Zhang; Ran Zhang; Zhao Wang; Zhi-Gang She; Yu-Sheng Wei; Guanhua Du; De-Pei Liu; Chih-Chuan Liang

Rationale: Vascular smooth muscle cell (VSMC) proliferation and migration are crucial events involved in the pathophysiology of vascular diseases. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), has been reported to have the function of antiatherosclerosis, but its role in neointima formation remains unknown. Objective: The present study was designed to investigate the role of SIRT1 in the regulation of neointima formation and to elucidate the underlying mechanisms. Methods and Results: A decrease in SIRT1 expression was observed following carotid artery ligation. smooth muscle cell (SMC)–specific human SIRT1 transgenic (Tg) mice were generated. SIRT1 overexpression substantially inhibited neointima formation after carotid artery ligation or carotid artery wire injury. In the intima of injured carotid arteries, VSMC proliferation (proliferating cell nuclear antigen (PCNA)–positive cells) was significantly reduced. SIRT1 overexpression markedly inhibited VSMC proliferation and migration and induced cell cycle arrest at G1/S transition in vitro. Accordingly, SIRT1 overexpression decreased the induction of cyclin D1 and matrix metalloproteinase-9 (MMP-9) expression by treatment with serum and TNF-&agr;, respectively, whereas RNAi knockdown of SIRT1 resulted in the opposite effect. Decreased cyclin D1 and MMP-9 expression/activity were also observed in injured carotid arteries from SMC-SIRT1 Tg mice. Furthermore, 2 targets of SIRT1, c-Fos and c-Jun, were involved in the downregulation of cyclin D1 and MMP-9 expression. Conclusions: Our findings demonstrate the inhibitory effect of SIRT1 on the VSMC proliferation and migration that underlie neointima formation and implicate SIRT1 as a potential target for intervention in vascular diseases.


Journal of Molecular and Cellular Cardiology | 2013

Oxidative stress in atrial fibrillation: An emerging role of NADPH oxidase

Ji-Youn Youn; Jun Zhang; Yixuan Zhang; Hou-Zao Chen; De-Pei Liu; Peipei Ping; James N. Weiss; Hua Cai

Atrial fibrillation (AF) is the most common cardiac arrhythmia. Patients with AF have up to seven-fold higher risk of suffering from ischemic stroke. Better understanding of etiologies of AF and its thromboembolic complications are required for improved patient care, as current anti-arrhythmic therapies have limited efficacy and off target effects. Accumulating evidence has implicated a potential role of oxidative stress in the pathogenesis of AF. Excessive production of reactive oxygen species (ROS) is likely involved in the structural and electrical remodeling of the heart, contributing to fibrosis and thrombosis. In particular, NADPH oxidase (NOX) has emerged as a potential enzymatic source for ROS production in AF based on growing evidence from clinical and animal studies. Indeed, NOX can be activated by known upstream triggers of AF such as angiotensin II and atrial stretch. In addition, treatments such as statins, antioxidants, ACEI or AT1RB have been shown to prevent post-operative AF; among which ACEI/AT1RB and statins can attenuate NOX activity. On the other hand, detailed molecular mechanisms by which specific NOX isoform(s) are involved in the pathogenesis of AF and the extent to which activation of NOX plays a causal role in AF development remains to be determined. The current review discusses causes and consequences of oxidative stress in AF with a special focus on the emerging role of NOX pathways.

Collaboration


Dive into the De-Pei Liu's collaboration.

Top Co-Authors

Avatar

Chih-Chuan Liang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hou-Zao Chen

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiang Lv

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

De-Long Hao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Hixson

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Ran Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Zhu-Qin Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dabeeru C. Rao

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge