Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hou-Zao Chen is active.

Publication


Featured researches published by Hou-Zao Chen.


Cardiovascular Research | 2008

Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice

Qing-Jun Zhang; Zhao Wang; Hou-Zao Chen; Shuang Zhou; Wei Zheng; Guang Liu; Yu-Sheng Wei; Hua Cai; De-Pei Liu; Chih-Chuan Liang

AIMS Hazardous environmental and genetic factors can damage endothelial cells to induce atherosclerotic vascular disease. Recent studies suggest that class III deacetylase SIRT1 may promote cell survival via novel antioxidative mechanisms. The current study tested the hypothesis that SIRT1, specifically overexpressed in the endothelium, is atheroprotective. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVECs) were used to study the effects of oxidized low-density lipoprotein (LDL) on SIRT1 expression. Endothelial cell-specific SIRT1 transgenic (SIRT1-Tg) mice were used to study the effects of SIRT1 on aortic vascular tone. SIRT1-Tg mice were crossed with apolipoprotein E null (apoE(-/-)) mice to obtain SIRT1-Tg/apoE(-/-) mice for the analysis of atherogenesis in the presence of endothelial overexpression of SIRT1. SIRT1 expression in HUVECs was increased by the treatment with oxidative LDL. Adenoviral-mediated overexpression of SIRT1 was protective of apoptosis of HUVECs. Calorie restriction increased, whereas high-fat diet decreased, the SIRT1 expression in mouse aortas. In SIRT1-Tg mice, high fat-induced impairment in endothelium-dependent vasorelaxation was improved compared with that of wild-type littermates. This was accompanied by an upregualtion of aortic endothelial nitric oxide synthase expression in the SIRT1-Tg mice. The SIRT1-Tg/apoE(-/-) mice had less atherosclerotic lesions compared with apoE(-/-) controls, without affecting blood lipids and glucose levels. CONCLUSION These results suggest that endothelium-specific SIRT1 overexpression likely suppresses atherogenesis via improving endothelial cell survival and function.


Circulation Research | 2011

Repression of P66Shc Expression by SIRT1 Contributes to the Prevention of Hyperglycemia-Induced Endothelial Dysfunction

Shuang Zhou; Hou-Zao Chen; Yan-Zhen Wan; Qing-Jun Zhang; Yu-Sheng Wei; Shuai Huang; Jin-Jing Liu; Yun-Biao Lu; Zhu-Qin Zhang; Ruifeng Yang; Ran Zhang; Hua Cai; De-Pei Liu; Chih-Chuan Liang

Rationale: Inactivation of the p66Shc adaptor protein confers resistance to oxidative stress and protects mice from aging-associated vascular diseases. However, there is limited information about the negative regulating mechanisms of p66Shc expression in the vascular system. Objective: In this study, we investigated the role of SIRT1, a class III histone deacetylase, in the regulation of p66Shc expression and hyperglycemia-induced endothelial dysfunction. Methods and Results: Expressions of p66Shc gene transcript and protein were significantly increased by different kinds of class III histone deacetylase (sirtuin) inhibitors in human umbilical vein endothelial cells and 293A cells. Adenoviral overexpression of SIRT1 inhibited high-glucose–induced p66Shc upregulation in human umbilical vein endothelial cells. Knockdown of SIRT1 increased p66Shc expression and also increased the expression levels of plasminogen activator inhibitor-1 expression, but decreased manganese superoxide dismutase expression in high-glucose conditions. However, knockdown of p66Shc significantly reversed the effects of SIRT1 knockdown. In addition, p66Shc overexpression significantly decreased manganese superoxide dismutase expression and increased plasminogen activator inhibitor-1 expression in high-glucose conditions, which were recovered by SIRT1 overexpression. Moreover, compared to streptozotocin-induced wild-type diabetic mice, endothelium-specific SIRT1 transgenic diabetic mice had decreased p66Shc expression at both the mRNA and the protein levels, improved endothelial function, and reduced accumulation of nitrotyrosine and 8-OHdG (markers of oxidative stress). We further found that SIRT1 was able to bind to the p66Shc promoter (−508 bp to −250 bp), resulting in a decrease in the acetylation of histone H3 bound to the p66Shc promoter region. Conclusion: Our findings indicate that repression of p66Shc expression by SIRT1 contributes to the protection of hyperglycemia-induced endothelial dysfunction.


Journal of Biological Chemistry | 2010

SIRT1 Suppresses Activator Protein-1 Transcriptional Activity and Cyclooxygenase-2 Expression in Macrophages

Ran Zhang; Hou-Zao Chen; Jin-Jing Liu; Yu-Yan Jia; Zhu-Qin Zhang; Ruifeng Yang; Yuan Zhang; Jing Xu; Yu-Sheng Wei; De-Pei Liu; Chih-Chuan Liang

SIRT1 (Sirtuin type 1), a mammalian orthologue of yeast SIR2 (silent information regulator 2), has been shown to mediate a variety of calorie restriction (CR)-induced physiological events, such as cell fate regulation via deacetylation of the substrate proteins. However, whether SIRT1 deacetylates activator protein-1 (AP-1) to influence its transcriptional activity and target gene expression is still unknown. Here we demonstrate that SIRT1 directly interacts with the basic leucine zipper domains of c-Fos and c-Jun, the major components of AP-1, by which SIRT1 suppressed the transcriptional activity of AP-1. This process requires the deacetylase activity of SIRT1. Notably, SIRT1 reduced the expression of COX-2, a typical AP-1 target gene, and decreased prostaglandin E2 (PGE2) production of peritoneal macrophages (pMΦs). pMΦs with SIRT1 overexpression displayed improved phagocytosis and tumoricidal functions, which are associated with depressed PGE2. Furthermore, SIRT1 protein level was up-regulated in CR mouse pMΦs, whereas elevated SIRT1 decreased COX-2 expression and improved PGE2-related macrophage functions that were reversed following inhibition of SIRT1 deacetylase activity. Thus, our results indicate that SIRT1 may be a mediator of CR-induced macrophage regulation, and its deacetylase activity contributes to the inhibition of AP-1 transcriptional activity and COX-2 expression leading to amelioration of macrophage function.


Frontiers in Physiology | 2014

Mitochondria, endothelial cell function, and vascular diseases.

Xiaoqiang Tang; Yu-Xuan Luo; Hou-Zao Chen; De-Pei Liu

Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction.


Journal of Clinical Investigation | 2011

The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice

Qing Jun Zhang; Hou-Zao Chen; Lin Wang; De-Pei Liu; Joseph A. Hill; Zhi Ping Liu

Cardiac hypertrophy and failure are accompanied by a reprogramming of gene expression that involves transcription factors and chromatin remodeling enzymes. Little is known about the roles of histone methylation and demethylation in this process. To understand the role of JMJD2A, a histone trimethyl demethylase, in cardiac hypertrophy, we generated mouse lines with heart-specific Jmjd2a deletion (hKO) and overexpression (Jmjd2a-Tg). Jmjd2a hKO and Jmjd2a-Tg mice had no overt baseline phenotype, but did demonstrate altered responses to cardiac stresses. While inactivation of Jmjd2a resulted in an attenuated hypertrophic response to transverse aortic constriction-induced (TAC-induced) pressure overload, Jmjd2a-Tg mice displayed exacerbated cardiac hypertrophy. We identified four-and-a-half LIM domains 1 (FHL1), a key component of the mechanotransducer machinery in the heart, as a direct target of JMJD2A. JMJD2A bound to the FHL1 promoter in response to TAC, upregulated FHL1 expression, and downregulated H3K9 trimethylation. Upregulation of FHL1 by JMJD2A was mediated through SRF and myocardin and required its demethylase activity. The expression of JMJD2A was upregulated in human hypertrophic cardiomyopathy patients. Our studies reveal that JMJD2A promotes cardiac hypertrophy under pathological conditions and suggest what we believe to be a novel mechanism for JMJD2A in reprogramming of gene expression involved in cardiac hypertrophy.


Circulation Research | 2011

SIRT1 Acts as a Modulator of Neointima Formation Following Vascular Injury in Mice

Li Li; Huina Zhang; Hou-Zao Chen; Peng Gao; Li-Hua Zhu; Hongliang Li; Xiang Lv; Qing-Jun Zhang; Ran Zhang; Zhao Wang; Zhi-Gang She; Yu-Sheng Wei; Guanhua Du; De-Pei Liu; Chih-Chuan Liang

Rationale: Vascular smooth muscle cell (VSMC) proliferation and migration are crucial events involved in the pathophysiology of vascular diseases. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), has been reported to have the function of antiatherosclerosis, but its role in neointima formation remains unknown. Objective: The present study was designed to investigate the role of SIRT1 in the regulation of neointima formation and to elucidate the underlying mechanisms. Methods and Results: A decrease in SIRT1 expression was observed following carotid artery ligation. smooth muscle cell (SMC)–specific human SIRT1 transgenic (Tg) mice were generated. SIRT1 overexpression substantially inhibited neointima formation after carotid artery ligation or carotid artery wire injury. In the intima of injured carotid arteries, VSMC proliferation (proliferating cell nuclear antigen (PCNA)–positive cells) was significantly reduced. SIRT1 overexpression markedly inhibited VSMC proliferation and migration and induced cell cycle arrest at G1/S transition in vitro. Accordingly, SIRT1 overexpression decreased the induction of cyclin D1 and matrix metalloproteinase-9 (MMP-9) expression by treatment with serum and TNF-&agr;, respectively, whereas RNAi knockdown of SIRT1 resulted in the opposite effect. Decreased cyclin D1 and MMP-9 expression/activity were also observed in injured carotid arteries from SMC-SIRT1 Tg mice. Furthermore, 2 targets of SIRT1, c-Fos and c-Jun, were involved in the downregulation of cyclin D1 and MMP-9 expression. Conclusions: Our findings demonstrate the inhibitory effect of SIRT1 on the VSMC proliferation and migration that underlie neointima formation and implicate SIRT1 as a potential target for intervention in vascular diseases.


Journal of Molecular and Cellular Cardiology | 2013

Oxidative stress in atrial fibrillation: An emerging role of NADPH oxidase

Ji-Youn Youn; Jun Zhang; Yixuan Zhang; Hou-Zao Chen; De-Pei Liu; Peipei Ping; James N. Weiss; Hua Cai

Atrial fibrillation (AF) is the most common cardiac arrhythmia. Patients with AF have up to seven-fold higher risk of suffering from ischemic stroke. Better understanding of etiologies of AF and its thromboembolic complications are required for improved patient care, as current anti-arrhythmic therapies have limited efficacy and off target effects. Accumulating evidence has implicated a potential role of oxidative stress in the pathogenesis of AF. Excessive production of reactive oxygen species (ROS) is likely involved in the structural and electrical remodeling of the heart, contributing to fibrosis and thrombosis. In particular, NADPH oxidase (NOX) has emerged as a potential enzymatic source for ROS production in AF based on growing evidence from clinical and animal studies. Indeed, NOX can be activated by known upstream triggers of AF such as angiotensin II and atrial stretch. In addition, treatments such as statins, antioxidants, ACEI or AT1RB have been shown to prevent post-operative AF; among which ACEI/AT1RB and statins can attenuate NOX activity. On the other hand, detailed molecular mechanisms by which specific NOX isoform(s) are involved in the pathogenesis of AF and the extent to which activation of NOX plays a causal role in AF development remains to be determined. The current review discusses causes and consequences of oxidative stress in AF with a special focus on the emerging role of NOX pathways.


Hypertension | 2014

Interferon Regulatory Factor 9 Protects Against Cardiac Hypertrophy by Targeting Myocardin

Ding-Sheng Jiang; Yuxuan Luo; Ran Zhang; Xiao-Dong Zhang; Hou-Zao Chen; Yan Zhang; Ke Chen; Shu-Min Zhang; Guo-Chang Fan; Peter Liu; De-Pei Liu; Hongliang Li

Pathological cardiac hypertrophy is a major risk factor for heart failure. In this study, we identified interferon regulatory factor 9 (IRF9), a member of the IRF family, as a previously unidentified negative regulator of cardiac hypertrophy. The level of IRF9 expression was remarkably elevated in the hearts from animals with aortic banding–induced cardiac hypertrophy. IRF9-deficient mice exhibited pronounced cardiac hypertrophy after pressure overload, as demonstrated by increased cardiomyocyte size, extensive fibrosis, reduced cardiac function, and enhanced expression of hypertrophy markers, whereas transgenic mice with cardiac-specific overexpression of murine IRF9 exhibited a significant reduction in the hypertrophic response. Mechanistically, IRF9 competes with p300 for binding to the transcription activation domain of myocardin, a coactivator of serum response factor (SRF). This interaction markedly suppresses the transcriptional activity of myocardin because IRF9 overexpression strongly inhibits the ability of myocardin to activate CArG box–dependent reporters. These results provide compelling evidence that IRF9 inhibits the development of cardiac hypertrophy by suppressing the transcriptional activity of myocardin in the heart.


The International Journal of Biochemistry & Cell Biology | 2011

Sirt1 deacetylates c-Myc and promotes c-Myc/Max association

Bei-Bei Mao; Guo-wei Zhao; Xiang Lv; Hou-Zao Chen; Zheng Xue; Ben Yang; De-Pei Liu; Chih-Chuan Liang

The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational modifications, especially acetylation of c-Myc, contribute to its activity in the leukemia cells remains largely unknown. Sirt1, a NAD-dependent class III histone deacetylase, has a paradoxical role in tumorigenesis by deacetylating several transcription factors, including p53, E2F1 and forkhead proteins. In this study, we show that Sirt1 interacts physically with the C-terminus of c-Myc and deacetylates c-Myc both in vitro and in vivo. Moreover, the deacetylation of c-Myc by Sirt1 promotes its association with Max, a partner essential for its activation, thereby facilitating c-Myc transactivation activity on hTERT promoter. Finally, inhibition of endogenous Sirt1 in K562 cells by either RNAi or its inhibitor NAM causes the overall decrease of c-Myc target genes expression, including hTERT, cyclinD2 and LDHA, which further suppress cell proliferation and arrest cell cycle at G1/S phase. Thus, our results demonstrate the positive effect of Sirt1 on c-Myc activity by efficiently enhancing c-Myc/Max association in human leukemia cell line K562, suggesting a potential role of Sirt1 in tumorigenesis.


Journal of Molecular Medicine | 2014

Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice.

Peng Gao; Ting-Ting Xu; Jie Lu; Li Li; Jing Xu; De-Long Hao; Hou-Zao Chen; De-Pei Liu

Angiotensin II (AngII) induces the development of vascular hypertrophy and hypertension. We have shown previously that overexpression of class III deacetylase SIRT1 inhibits AngII-induced hypertrophy in vascular smooth muscle cells (VSMCs). However, the direct role of SIRT1 in VSMCs in response to AngII infusion in vivo remains unclear. Here, we found that the expression and activity of SIRT1 in mouse aortas was decreased significantly by AngII infusion. VSMC-specific SIRT1 transgene (SV-Tg) prevented the increase in systolic blood pressure (SBP) caused by AngII infusion without affecting heart function in mice. SIRT1 overexpression alleviated vascular remodeling in mouse thoracic and renal aortas induced by AngII infusion, and significantly inhibited reactive oxygen species (ROS) generation, vascular inflammation, and collagen synthesis in arterial walls. Reduced expression of transforming growth factor-β 1 (TGF-β1) was also observed in the aortas of AngII-infused SV-Tg mice. Moreover, SIRT1 overexpression decreased AngII-increased binding of nuclear factor-κB on its specific binding sites on TGF-β1 promoter. Taken together, these data demonstrate that SIRT1 overexpression in VSMCs reduces SBP and inhibits AngII-induced vascular remodeling in mice. The inhibition of vascular remodeling contributes, at least in part, to the antihypertensive effect of SIRT1.Key messageSIRT1 is reduced in aortas of AngII-infused hypertensive mice.SIRT1 VSMC transgene alleviates AngII-increased systolic blood pressure.SIRT1 VSMC transgene attenuates AngII-induced vascular remodeling.VSMC SIRT1 overexpression inhibits remodeling-related pathological changes.VSMC SIRT1 overexpression reduces AngII-induced TGF-β1 expression.

Collaboration


Dive into the Hou-Zao Chen's collaboration.

Top Co-Authors

Avatar

De-Pei Liu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ran Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Zhu-Qin Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Chih-Chuan Liang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Peng Gao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yu-Sheng Wei

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ruifeng Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

De-Long Hao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Wei Zheng

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Li Li

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge