Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dean D. Schwartz is active.

Publication


Featured researches published by Dean D. Schwartz.


Biochemical and Biophysical Research Communications | 2002

Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes.

Qiao Zhong; Chia-Yu Lin; Kristen J. Clarke; Robert J. Kemppainen; Dean D. Schwartz; Robert L. Judd

Resistin is an adipocyte-derived hormone whose role in the development of insulin resistance is controversial. Endothelin-1 (ET-1) is a 21 amino acid peptide demonstrated to possess vasoconstrictor, positive inotropic, mitogenic, and metabolic properties. In numerous disease states, including congestive heart failure, obesity, and diabetes, elevated levels of ET-1 have been reported and are thought to contribute to the pathology of the disease. A recent study demonstrated that ET-1 induces the expression and stimulates the secretion of the adipose tissue-derived hormone leptin. However, the effect of ET-1 on resistin secretion has not been determined. To characterize the effect of ET-1 on resistin secretion, 3T3-L1 fibroblasts were differentiated into adipocytes and allowed to mature for 14 days. Cells were incubated for 24h with ET-1 (1-100 nM), insulin (1-100 nM), insulin+ET-1 (100 nM I+E) or the appropriate vehicle or antagonist. At the end of the incubation period, resistin secretion was determined in the media by immunoblotting and densitometric analysis. ET-1 (1-100 nM) significantly decreased basal resistin secretion by 49% (1 nM), 43% (10nM), and 59% (100 nM). Insulin (1-100 nM) produced a concentration-dependent increase in resistin secretion from 3T3-L1 adipocytes (1 nM-42%, 10nM-55%, and 100 nM-86% vs. control). Insulin-stimulated resistin secretion (100 nM) was almost completely inhibited (94%) by ET-1 (100 nM). The effects of ET-1 on resistin protein secretion were inhibited by co-incubation with the ET(A) receptor antagonist BQ-610. In conclusion, our studies demonstrate that basal and hormonal stimulation of resistin secretion by insulin are inhibited by ET-1. Such findings demonstrate that resistin secretion is regulated in a similar manner to other adipose tissue factors, including leptin, in 3T3-L1 adipocytes. In addition, our findings suggest that vascular factors such as ET-1 may regulate whole body energy metabolism through adipocyte-derived hormones, including leptin and resistin.


International Journal of Oncology | 2011

Thiazolidinediones/PPARγ agonists and fatty acid synthase inhibitors as an experimental combination therapy for prostate cancer

Mahmoud Mansour; Dean D. Schwartz; Robert L. Judd; Benson T. Akingbemi; Tim D. Braden; Edward E. Morrison; John C. Dennis; Frank F. Bartol; Amanda Hazi; India D. Napier; Asim B. Abdel-Mageed

The prostate cancer (PCa) cell lines LNCaP, PC-3, and DU-145 express peroxisome proliferator-activated receptor γ (PPARγ) but its role in PCa is unclear. Thiazolidinediones (TZDs), a family of PPARγ activators and type 2 anti-diabetic drugs, exhibit anti-tumor apoptotic effects in human PCa cell lines. Likewise, pharmacological inhibitors of fatty acid synthase (FASN), a metabolic enzyme highly expressed in PCa, induce apoptosis in prostate and other cancer cells. Here, we show positive correlation between PPARγ and FASN protein in PCa cell lines and synergism between TZDs and FASN blockers in PCa cell viability reduction and apoptosis induction. Combined TZDs/FASN has enhanced anti-tumor properties in both androgen-dependent LNCaP and androgen-independent PC-3 and DU-145 cells when compared with single drug exposure. Low concentrations (5-10 μM) of the TZD drug rosiglitazone failed to alter cell viability but, paradoxically, upregulated lipogenic genes [PPARγ, FASN, sterol regulatory element binding protein-1c (SREBP-1c) and acetyl-Co A carboxylase-1 (ACC1)], which diminish the apoptotic effects of rosiglitazone. The mean IC50 in all cell lines was 45 ± 2 μM for rosiglitazone compared with significantly lower 5 ± 1 μM for rosiglitazone plus the FASN blocker cerulenin, and 10.2 ± 2 μM for rosiglitazone plus the cerulenin synthetic analog C75. The IC50 for the combined rosiglitazone and FASN blockers contrasts with the relatively higher IC50 for rosiglitazone (45 ± 2 μM), the TZD drug troglitazone (13 ± 2 μM), cerulenin (32 ± 1 μM), or C75 (26 ± 3 μM) when these drugs were used alone. In summary, this study shows proof-of-principle for combining FASN blockers and TZDs for PCa treatment.


Journal of the American Chemical Society | 2014

A Mononuclear Manganese(II) Complex Demonstrates a Strategy To Simultaneously Image and Treat Oxidative Stress

Meng Yu; Stephen L. Ambrose; Zachary L. Whaley; Sanjun Fan; John D. Gorden; Ronald J. Beyers; Dean D. Schwartz; Christian R. Goldsmith

A manganese(II) complex with a ligand containing an oxidizable quinol group serves as a turn-on sensor for H2O2. Upon oxidation, the relaxivity of the complex in buffered water increases by 0.8 mM(-1) s(-1), providing a signal that can be detected and quantified by magnetic resonance imaging. The complex also serves as a potent antioxidant, suggesting that this and related complexes have the potential to concurrently visualize and alleviate oxidative stress.


Ppar Research | 2008

Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor gamma with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development.

Mahmoud Mansour; Hari O. Goyal; Tim D. Braden; John C. Dennis; Dean D. Schwartz; Robert L. Judd; Frank F. Bartol; Elaine S. Coleman; Edward E. Morrison

Exposure to the estrogen receptor alpha (ERα) ligand diethylstilbesterol (DES) between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ERα and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). Transcripts for PPARs α, β, and γ and γ1a splice variant were detected in Sprague-Dawley normal rat penis with PPARγ predominating. In addition, PPARγ1b and PPARγ2 were newly induced by DES. The PPARγ transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPARγ protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ERα and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPARγ expression. These results suggest a biological overlap between PPARγ and ERα and highlight a mechanism for endocrine disruption.


Ppar Research | 2009

Activation of PPARγ by Rosiglitazone Does Not Negatively Impact Male Sex Steroid Hormones in Diabetic Rats

Mahmoud Mansour; Elaine S. Coleman; John C. Dennis; Benson T. Akingbemi; Dean D. Schwartz; Tim D. Braden; Robert L. Judd; Eric P. Plaisance; Laura K. Stewart; Edward E. Morrison

Peroxisome proliferator-activated receptor gamma (PPARγ) activation decreased serum testosterone (T) in women with hyperthecosis and/or polycystic ovary syndrome and reduced the conversion of androgens to estradiol (E2) in female rats. This implies modulation of female sex steroid hormones by PPARγ. It is not clear if PPARγ modulates sex steroid hormones in diabetic males. Because PPARγ activation by thiazolidinedione increased insulin sensitivity in type 2 diabetes, understanding the long term impact of PPARγ activation on steroid sex hormones in males is critical. Our objective was to determine the effect of PPARγ activation on serum and intratesticular T, luteinizing hormone (LH), follicle stimulating hormone (FSH) and E2 concentrations in male Zucker diabetic fatty (ZDF) rats treated with the PPARγ agonist rosiglitazone (a thiazolidinedione). Treatment for eight weeks increased PPARγ mRNA and protein in the testis and elevated serum adiponectin, an adipokine marker for PPARγ activation. PPARγ activation did not alter serum or intratesticular T concentrations. In contrast, serum T level but not intratesticular T was reduced by diabetes. Neither diabetes nor PPARγ activation altered serum E2 or gonadotropins FSH and LH concentrations. The results suggest that activation of PPARγ by rosiglitazone has no negative impact on sex hormones in male ZDF rats.


International Journal of Oncology | 2012

Expression of melanocortin receptors in human prostate cancer cell lines: MC2R activation by ACTH increases prostate cancer cell proliferation

Saly Hafiz; John C. Dennis; Dean D. Schwartz; Robert L. Judd; Ya-Xiong Tao; Kamel F. Khazal; Benson T. Akingbemi; Xiu-Lei Mo; Asim B. Abdel-Mageed; Edward E. Morrison; Mahmoud Mansour

The melanocortin receptors (MCRs 1-5) are G protein coupled-receptors (GPCRs) that regulate food intake, inflammation, skin pigmentation, sexual function and steroidogenesis. Their peptide ligands, the melanocortins, are α-, β- and γ-melanocyte-stimulating hormone and adrenocorticotropic hormone (ACTH) all of which are secreted from the anterior pituitary gland under hypothalamic control. MC2R binds ACTH but has no affinity for the other melanocortins and is, thereby, pharmacologically different from MCRs that bind those ligands. Evidence suggests that elevated GPCRs transactivate the androgen receptor (AR), the critical mediator of prostate cell growth, and consequently promote prostate cancer cell proliferation. It may be that reduced central melanocortin signaling is coincidental with reversal of prostate cancer cachexia, but no data are available on the expression of, or the role for, MCRs in prostate cancer. Here, we show that MCR (1-5) mRNAs are expressed in androgen-dependent LNCaP and androgen-independent PC3 and DU-145 human prostate cancer cell lines. Further, MC2R, the specific target of ACTH, is expressed in LNCaP, PC3 and DU-145 cells. Among the several synthetic MCR peptide ligands that we used, only ACTH promoted concentration-dependent cell proliferation in the three cell lines as shown by MTT cell proliferation assay. In LNCaP cells, the effect was additive with testosterone stimulation and was partially blunted with SHU9119, a non-selective MCR antagonist. In the same cells, ACTH induced cAMP production and increased AR nuclear labeling in immunocytochemical assays. Our observations suggest that MC2R is involved in prostate carcinogenesis and that targeting MC2R signaling may provide a novel avenue in prostate carcinoma treatment.


American Journal of Veterinary Research | 2015

Characterization of endothelial colony-forming cells from peripheral blood samples of adult horses

Margaret M. Salter; Wen J. Seeto; Blake B. DeWitt; Sarah A. Hashimi; Dean D. Schwartz; Elizabeth A. Lipke; A. A. Wooldridge

OBJECTIVE To isolate and characterize endothelial colony-forming cells (ECFCs; a subtype of endothelial progenitor cells) from peripheral blood samples of horses. SAMPLE Jugular venous blood samples from 24 adult horses. PROCEDURES Blood samples were cultured in endothelial cell growth medium. Isolated ECFCs were characterized by use of functional assays of fluorescence-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) uptake and vascular tubule formation in vitro. Expression of endothelial (CD34, CD105, vascular endothelial growth factor receptor 2, and von Willebrand factor) and hematopoietic (CD14) cell markers was assessed through indirect immunofluorescence assay and flow cytometry. The number of passages before senescence was determined through serial evaluation of DiI-Ac-LDL uptake, vascular tubule formation, and cell doubling rates. RESULTS Samples from 3 horses produced colonies at 12 ± 2.5 days with characteristic endothelial single layer cobblestone morphology and substantial outgrowth on expansion. Equine ECFCs formed vascular tubules in vitro and had uptake of DiI-Ac-LDL (74.9 ± 14.7% positive cells). Tubule formation and DiI-Ac-LDL uptake diminished by passage 5. Equine ECFCs tested positive for von Willebrand factor, vascular endothelial growth factor receptor 2, CD34, and CD105 with an immunofluorescence assay and for CD14 and CD105 via flow cytometry. CONCLUSIONS AND CLINICAL RELEVANCE ECFCs can be isolated from peripheral blood of horses and have characteristics similar to those described for other species. These cells may have potential therapeutic use in equine diseases associated with ischemia or delayed vascularization.


Nature Chemistry | 2018

Superoxide dismutase activity enabled by a redox-active ligand rather than metal

Meghan B. Ward; Andreas Scheitler; Meng Yu; Laura Senft; Annika S. Zillmann; John D. Gorden; Dean D. Schwartz; Ivana Ivanović-Burmazović; Christian R. Goldsmith

AbstractReactive oxygen species are integral to many physiological processes. Although their roles are still being elucidated, they seem to be linked to a variety of disorders and may represent promising drug targets. Mimics of superoxide dismutases, which catalyse the decomposition of O2•− to H2O2 and O2, have traditionally used redox-active metals, which are toxic outside of a tightly coordinating ligand. Purely organic antioxidants have also been investigated but generally require stoichiometric, rather than catalytic, doses. Here, we show that a complex of the redox-inactive metal zinc(ii) with a hexadentate ligand containing a redox-active quinol can catalytically degrade superoxide, as demonstrated by both reactivity assays and stopped-flow kinetics studies of direct reactions with O2•− and the zinc(ii) complex. The observed superoxide dismutase catalysis has an important advantage over previously reported work in that it is hastened, rather than impeded, by the presence of phosphate, the concentration of which is high under physiological conditions.Catalytic superoxide dismutase mimics typically involve manganese centres. Now, a complex based on redox-inactive zinc(ii) and a redox-active quinol ligand is found to catalytically degrade superoxide. The reaction, proposed to occur through oxidation of the ligand to a quinoxyl radical, is hastened rather than inhibited by the presence of phosphate.


Veterinary Clinical Pathology | 2016

Abnormal coagulation factor VIII transcript in a Tennessee Walking Horse colt with hemophilia A

Elaine M. Norton; A. A. Wooldridge; A. J. Stewart; Layla Cusimano; Dean D. Schwartz; Calvin M. Johnson; Mary K. Boudreaux; Pete W. Christopherson

Hemophilia A is an X-chromosome-linked disorder caused by a deficiency in factor VIII (FVIII). Although foals have been diagnosed with hemophilia A based on deficiency in FVIII activity, causative gene mutations have not been identified. The genomic DNA and cDNA encoding FVIII of a Tennesee Walking Horse colt affected with hemophilia A and the genomic DNA of his dam and a normal unrelated horse were analyzed with no splice site or coding sequence abnormalities identified in any of the horses. Polymerase chain reactions (PCR) were then performed on hepatic cDNA from the affected colt and an unrelated normal horse, and no product was obtained for the sequence between and including exon 1 and exon 2 in the affected colt. Based on these results, suspected mutations were identified in the noncoding region of FVIII (intron 1), and genomic sequencing of intron 1 in the dam and the affected colt suggested maternal inheritance.


Biochemical and Biophysical Research Communications | 2003

Regulation of adiponectin secretion by endothelin-1.

Kristen J. Clarke; Qiao Zhong; Dean D. Schwartz; Elaine S. Coleman; Robert J. Kemppainen; Robert L. Judd

Collaboration


Dive into the Dean D. Schwartz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge